Sains Malaysiana 52(2)(2023): 533-545

http://doi.org/10.17576/jsm-2023-5202-16

 

Batch and Continuous Flow Treatment Studies of Trichloroethylene Contaminated in Water by Silver and Cerium Doped Zinc Oxide Adsorption and Photocatalysis

(Kajian Rawatan Kumpulan dan Aliran Berterusan Trikloroetilena Tercemar dalam Air oleh Perak dan Cerium Terdop Zink Oksida Penjerapan dan Fotopemangkinan)

 

SARTTRAWUT TULAPHOL1,5, NURAK GRISDANURAK2.3, FRANKLIN ANARIBA4, CHANTRA TONGCUMPOU5 & PUMMARIN KHAMDAHSAG5,*

 

1Sustainable Polymer & Innovative Composite Materials Research Group, Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology, Thonburi, Bangkok 10140, Thailand

2Department of Chemical Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Pathumthani 12120, Thailand

3Center of Excellence in Environmental Catalysis and Adsorption, Thammasat University, Pathumthani 12120, Thailand

4Engineering Product Development (EPD), Singapore University of Technology and Design, 487372, Singapore

5Environmental Research Institute, Chulalongkorn University, Bangkok 10330, Thailand

 

Received: 30 June 2022/Accepted: 5 December 2022

 

Abstract

The development of photocatalytic treatment in continuous flow systems to be more practical is challenging. This research aimed to study batch and continuous flow treatment of trichloroethylene (TCE) contaminated in water by silver and cerium doped zinc oxide (0.005Ag-0.005Ce-ZnO) visible light driven photocatalyst. This catalyst was selected to represent the green route synthesis with simplicity and ease of upscaling. The 0.005Ag-0.005Ce-ZnO powder was synthesized using sticky rice flour as a template. Mechanical coating of the 0.005Ag-0.005Ce-ZnO powder on activated alumina (Al2O3) beads was done to improve the appropriate packing in the fixed bed columns. Characterization of 0.005Ag-0.005Ce-ZnO showed a higher response to visible light and smaller crystallite size compared to zinc oxide synthesized with the same method. Using sticky rice starch as a template increased the uniform distribution of the elements. The photocatalytic batch test over 0.005Ag-0.005Ce-ZnO powder, 0.30 g/100 mL, could remove TCE up to 80% in 180 min. The decrease of TCE via photocatalysis compared to volatilization, adsorption, and photolysis presented the predominance of photocatalysis. Langmuir-Hinshelwood kinetics described that the decrease of TCE more depended on the reaction than adsorption. In addition, the TCE degradation steadily remained at 80-90% along the run of 0.005Ag-0.005Ce-ZnO@Al2O3 photocatalysis under visible light from both warm white lamps and sunlight in the continuous flow system. Besides photocatalysis, TCE adsorption on 0.005Ag-0.005Ce-ZnO@Al2O3 packed in the columns showed significant results. Our findings presented the possibility of applying the photocatalytic continuous flow system to remove TCE in industrial wastewater.

 

Keywords: Continuous flow system; fixed bed column; photocatalysis; visible light; zinc oxide

 

Abstrak

Pembangunan rawatan fotopemangkinan dalam sistem aliran berterusan untuk menjadi lebih praktikal adalah mencabar. Penyelidikan ini bertujuan untuk mengkaji kumpulan dan rawatan aliran berterusan trikloroetilena (TCE) tercemar dalam air oleh perak dan cerium terdop zink oksida (0.005Ag-0.005Ce-ZnO) pemangkinan dipacu cahaya nampak. Pemangkin ini dipilih untuk mewakili sintesis laluan hijau dengan kesederhanaan dan kemudahan peningkatan. Serbuk 0.005Ag-0.005Ce-ZnO telah disintesis menggunakan tepung beras melekit sebagai templat. Salutan mekanikal serbuk 0.005Ag-0.005Ce-ZnO pada manik alumina teraktif (Al2O3) telah dilakukan untuk menambah baik pembungkusan yang sesuai dalam turus lapisan tetap. Pencirian 0.005Ag-0.005Ce-ZnO menunjukkan tindak balas yang lebih tinggi kepada cahaya boleh nampak dan saiz kristal yang lebih kecil berbanding zink oksida yang disintesis dengan kaedah yang sama. Penggunaan kanji beras pulut sebagai templat meningkatkan pengagihan unsur secara seragam. Ujian kumpulan fotopemangkinan ke atas serbuk 0.005Ag-0.005Ce-ZnO, 0.30 g/100 mL boleh mengeluarkan TCE sehingga 80% dalam 180 min. Penurunan TCE melalui fotopemangkinan berbanding dengan peruapan, penjerapan dan fotolisis menunjukkan dominasi fotopemangkinan. Kinetik Langmuir-Hinshelwood menggambarkan bahawa penurunan TCE lebih bergantung kepada tindak balas daripada penjerapan. Di samping itu, kemerosotan TCE secara berterusan kekal pada 80-90% sepanjang kajian fotopemangkinan 0.005Ag-0.005Ce-ZnO@Al2O3 di bawah cahaya boleh nampak daripada kedua-dua lampu putih hangat dan cahaya matahari dalam sistem aliran berterusan. Selain fotopemangkinan, penjerapan TCE pada 0.005Ag-0.005Ce-ZnO@Al2O3 yang terpadat dalam turus menunjukkan hasil yang ketara. Penemuan kami membentangkan kemungkinan menggunakan sistem aliran berterusan fotopemangkinan untuk menyingkirkan TCE dalam air sisa industri.

 

Kata kunci: Cahaya boleh nampak; fotopemangkinan; sistem aliran berterusan; turus lapisan tetap; zink oksida

 

REFERENCES

Akhtar, J., Tahir, A.K., Sagir, M. & Bamufleh, H.S. 2020. Improved photocatalytic performance of Gd and Nd co-doped ZnO nanorods for the degradation of methylene blue. Ceramics International 46: 11955-11961.

Fogler, H.S. 2006. Elements of Chemical Reaction Engineering. 4th ed. Upper Saddle River: Pearson Education, Inc.

Hosny, M., Fawzy, M. & Eltaweil, A.S. 2022. Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Scientific Reports 12(1): 7316.

Hu, B., Sun, Q., Zuo, C., Pei, Y., Yang, S., Zheng, H. & Liu, F. 2019. A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water. Beilstein Journal of Nanotechnology 10: 1157-1165.

Khamdahsag, P., Pimpha, N., Thongruang, R., Grisdanurak, N., Nanny, M.A. & Wittayakun, J. 2018. Photocatalysis of atrazine using ZnO texturally modified with sticky rice starch template and doped with transition metals. Environmental Engineering and Management Journal 17(12): 2923-2931.

Khamdahsag, P., Pattanasiriwisawa, W., Nanny, M.A. & Grisdanurak, N. 2012. Comparative study of sticky rice starch and polyvinylpyrrolidone as templates for ZnO and Ce-ZnO synthesis. Environmental Engineering and Management Journal 11(4): 759-766.

Khanchandani, S., Srivastava, P.K., Kumar, S., Ghosh, S. & Ganguli, A.K. 2014. Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag2S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis. Inorganic Chemistry 53: 8902-8912.

Kim, K.S., Kwon, T.S., Yang, J.S. & Yang, J.W. 2007. Simultaneous removal of chlorinated contaminants by pervaporation for the reuse of a surfactant. Desalination 205: 87-96.

Kumar, S.G. & Rao, K.S.R.K. 2015. Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Advances 5: 3306-3342.

Laudadio, G. & Noël, T. 2021. 1 Photochemical Transformations in Continuous-Flow Reactors. Walter de Gruyter GmbH.

Liang, Q., Qiao, F., Cui, X. & Hou, X. 2019. Controlling the morphology of ZnO structures via low temperature hydrothermal method and their optoelectronic application. Material Science and Semiconductor Processing 89: 154-160.

Liu, H., Hu, Y., Zhang, Z., Liu, X., Jia, H. & Xu, B. 2015. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation. Applied Surface Science 355: 644-652.

Maldonado, C., Fierro, J.L.G., Coronado, J., Sánchez, B. & Reyes, P. 2010. Title of Paper. Journal of the Chilean Chemical Society 55(3): 404-407.

Martínez Vargas, D.X., De la Rosa, J.R., Lucio-Ortiz, C.J., Hernández-Ramirez, A., Flores-Escamilla, G.A. & Garcia, C.D. 2015. Photocatalytic degradation of trichloroethylene in a continuous annular reactor using Cu-doped TiO2 catalysts by sol-gel synthesis. Applied Catalysis B: Environmental 179: 249-261.

Miao, J., Jia, Z., Lu, H.B., Habibi, D. & Zhang, L.C. 2014. Heterogeneous photocatalytic degradation of mordant black 11 with ZnO nanoparticles under UV-Vis light. Journal of the Taiwan Institute of Chemical Engineers 45: 1636-1641.

Mittal, M., Sharma, M. & Pandey, O.P. 2016. Fast and quick degradation properties of doped and capped ZnO nanoparticles under UV–visible light radiations. Solar Energy 125: 51-64.

Pavithra, M. & Jessie Raj, M.B. 2022. Synthesis of ultrasonic assisted co-precipitated Ag/ZnO nanorods and their profound anti-liver cancer and antibacterial properties. Materials Science and Engineering: B 278: 115653.

Pongwan, P., Inceesungvorn, B., Wetchakun, K., Phanichphant, S. & Wetchakun, N. 2012. Highly efficient visible-light-induced photocatalytic activity of Fe-doped TiO2 nanoparticles. Engineering Journal 16(3): 13-16.

Pudukudy, M. & Yaakob, Z. 2015. Facile synthesis of quasi spherical ZnO nanoparticles with excellent photocatalytic activity. Journal of Cluster Science 26: 1187-1201.

Shenoy, S., Tarafder, K. & Sridharan, K. 2021. Bimetallic nanoparticles grafted ZnO hierarchical structures as efficient visible light driven photocatalyst: An experimental and theoretical study. Journal of Molecular Structure 1236: 130355.

Su, Y., Straathof, N.J.W., Hessel, V. & Noël, T. 2014. Photochemical transformations accelerated in continuous-flow reactors: Basic concepts and applications. Chemistry - A European Journal 20(34): 10562-10589.

Sukriti, Chand, P., Singh, V. & Kumar, D. 2020. Rapid visible light-driven photocatalytic degradation using Ce-doped ZnO nanocatalysts. Vacuum 178: 109364.

Veerakumar, P., Sangili, A., Saranya, K., Pandikumar, A. & Lin, K.C. 2021. Palladium and silver nanoparticles embedded on zinc oxide nanostars for photocatalytic degradation of pesticides and herbicides. Chemical Engineering Journal 410: 128434.

Wang, K.H., Jehng, J.M., Hsieh, Y.H. & Chang, C.Y. 2002. The reaction pathway for the heterogeneous photocatalysis of trichloroethylene in gas phase. Journal of Hazardous Materials 90(1): 63-75.

Wang, J., Jiang, Z., Zhang, Z., Xie, Y., Lv, Y., Li, J., Deng, Y. & Zhang, X. 2009. Study on inorganic oxidants assisted sonocatalytic degradation of acid red B in presence of nano-sized ZnO powder. Separation and Purification Technology 67: 38-43.

Wang, J., Jiang, Z., Zhang, Z., Xie, Y., Wang, X., Xing, Z., Xu, R. & Zhang, X. 2008. Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-size ZnO powder under ultrasonic irradiation. Ultrasonics Sonochemistry 15: 768-774.

Wu, B., Li, J. & Li, Q. 2019. Preparation and photoluminescence behavior of Mn-doped nano-ZnO. Optik 188: 205-211.

 

*Corresponding author; email: pummarin.k@chula.ac.th

 

 

 

previous