Sains Malaysiana 52(2)(2023): 533-545
http://doi.org/10.17576/jsm-2023-5202-16
Batch
and Continuous Flow Treatment Studies of Trichloroethylene Contaminated in
Water by Silver and Cerium Doped Zinc Oxide Adsorption
and Photocatalysis
(Kajian Rawatan Kumpulan dan Aliran Berterusan
Trikloroetilena Tercemar dalam Air oleh Perak dan Cerium Terdop Zink Oksida
Penjerapan dan Fotopemangkinan)
SARTTRAWUT TULAPHOL1,5, NURAK GRISDANURAK2.3,
FRANKLIN ANARIBA4, CHANTRA TONGCUMPOU5 & PUMMARIN KHAMDAHSAG5,*
1Sustainable Polymer & Innovative Composite Materials Research Group,
Department of Chemistry, Faculty of Science, King Mongkut’s University of
Technology,
Thonburi, Bangkok 10140, Thailand
2Department of Chemical Engineering, Faculty of Engineering, Thammasat
School of Engineering, Thammasat University, Pathumthani 12120, Thailand
3Center of Excellence in Environmental Catalysis and Adsorption, Thammasat
University, Pathumthani 12120, Thailand
4Engineering Product Development (EPD), Singapore University of Technology
and Design, 487372, Singapore
5Environmental Research Institute, Chulalongkorn University, Bangkok
10330, Thailand
Received:
30 June 2022/Accepted: 5 December 2022
Abstract
The development of photocatalytic treatment in continuous
flow systems to be more practical is challenging. This research aimed to study
batch and continuous flow treatment of trichloroethylene (TCE) contaminated in
water by silver and cerium doped zinc oxide (0.005Ag-0.005Ce-ZnO) visible light
driven photocatalyst. This catalyst was selected to represent the green route
synthesis with simplicity and ease of upscaling. The 0.005Ag-0.005Ce-ZnO powder
was synthesized using sticky rice flour as a template. Mechanical coating of
the 0.005Ag-0.005Ce-ZnO powder on activated alumina (Al2O3) beads was done to improve the
appropriate packing in the fixed bed columns. Characterization of
0.005Ag-0.005Ce-ZnO showed a higher response to visible light and smaller
crystallite size compared to zinc oxide synthesized with the same method. Using
sticky rice starch as a template increased the uniform distribution of the
elements. The photocatalytic batch test over 0.005Ag-0.005Ce-ZnO powder, 0.30
g/100 mL, could remove TCE up to 80% in 180 min. The decrease of TCE via photocatalysis
compared to volatilization, adsorption, and photolysis presented the
predominance of photocatalysis. Langmuir-Hinshelwood kinetics described that
the decrease of TCE more depended on the reaction than adsorption. In addition,
the TCE degradation steadily remained at 80-90% along the run of
0.005Ag-0.005Ce-ZnO@Al2O3 photocatalysis under visible light from both warm white lamps and
sunlight in the continuous flow system. Besides photocatalysis, TCE adsorption
on 0.005Ag-0.005Ce-ZnO@Al2O3 packed in the columns showed
significant results. Our findings presented the possibility of applying the
photocatalytic continuous flow system to remove TCE in industrial wastewater.
Keywords:
Continuous flow system; fixed bed column; photocatalysis; visible light; zinc
oxide
Abstrak
Pembangunan rawatan fotopemangkinan dalam sistem aliran berterusan untuk
menjadi lebih praktikal adalah mencabar. Penyelidikan ini
bertujuan untuk mengkaji kumpulan dan rawatan aliran berterusan trikloroetilena
(TCE) tercemar dalam air oleh perak dan cerium terdop zink oksida
(0.005Ag-0.005Ce-ZnO) pemangkinan dipacu cahaya nampak. Pemangkin ini dipilih untuk mewakili sintesis laluan hijau dengan
kesederhanaan dan kemudahan peningkatan. Serbuk
0.005Ag-0.005Ce-ZnO telah disintesis menggunakan tepung beras melekit sebagai
templat. Salutan mekanikal serbuk 0.005Ag-0.005Ce-ZnO pada manik
alumina teraktif (Al2O3) telah dilakukan untuk menambah
baik pembungkusan yang sesuai dalam turus lapisan tetap. Pencirian 0.005Ag-0.005Ce-ZnO menunjukkan tindak balas yang lebih tinggi
kepada cahaya boleh nampak dan saiz kristal yang lebih kecil berbanding zink
oksida yang disintesis dengan kaedah yang sama. Penggunaan kanji
beras pulut sebagai templat meningkatkan pengagihan unsur secara seragam. Ujian kumpulan fotopemangkinan ke atas serbuk 0.005Ag-0.005Ce-ZnO, 0.30
g/100 mL boleh mengeluarkan TCE sehingga 80% dalam 180 min. Penurunan TCE melalui fotopemangkinan berbanding dengan peruapan,
penjerapan dan fotolisis menunjukkan dominasi fotopemangkinan. Kinetik Langmuir-Hinshelwood menggambarkan bahawa penurunan TCE lebih
bergantung kepada tindak balas daripada penjerapan. Di samping itu, kemerosotan TCE secara berterusan kekal pada 80-90%
sepanjang kajian fotopemangkinan 0.005Ag-0.005Ce-ZnO@Al2O3 di bawah cahaya boleh nampak daripada kedua-dua lampu putih hangat dan cahaya
matahari dalam sistem aliran berterusan. Selain
fotopemangkinan, penjerapan TCE pada 0.005Ag-0.005Ce-ZnO@Al2O3 yang terpadat dalam turus menunjukkan hasil yang ketara. Penemuan kami membentangkan kemungkinan menggunakan sistem aliran
berterusan fotopemangkinan untuk menyingkirkan TCE dalam air sisa industri.
Kata kunci: Cahaya boleh nampak; fotopemangkinan; sistem aliran berterusan; turus lapisan tetap; zink oksida
REFERENCES
Akhtar,
J., Tahir, A.K., Sagir, M. & Bamufleh,
H.S. 2020. Improved photocatalytic performance of Gd and Nd co-doped ZnO nanorods for the degradation of
methylene blue. Ceramics International 46: 11955-11961.
Fogler, H.S. 2006. Elements of Chemical Reaction Engineering. 4th ed. Upper Saddle River: Pearson Education, Inc.
Hosny, M., Fawzy, M. & Eltaweil,
A.S. 2022. Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and
antioxidant activities. Scientific
Reports 12(1): 7316.
Hu, B., Sun, Q., Zuo, C.,
Pei, Y., Yang, S., Zheng, H. & Liu, F. 2019. A highly efficient porous
rod-like Ce-doped ZnO photocatalyst for the
degradation of dye contaminants in water. Beilstein Journal of Nanotechnology 10: 1157-1165.
Khamdahsag, P., Pimpha, N., Thongruang, R., Grisdanurak, N., Nanny, M.A. & Wittayakun,
J. 2018. Photocatalysis of atrazine using ZnO texturally modified with sticky rice starch template and doped with transition
metals. Environmental Engineering and
Management Journal 17(12): 2923-2931.
Khamdahsag, P., Pattanasiriwisawa, W., Nanny, M.A. & Grisdanurak, N. 2012. Comparative study of sticky rice
starch and polyvinylpyrrolidone as templates for ZnO and Ce-ZnO synthesis. Environmental Engineering and Management Journal 11(4): 759-766.
Khanchandani, S.,
Srivastava, P.K., Kumar, S., Ghosh, S. & Ganguli, A.K. 2014. Band gap
engineering of ZnO using core/shell morphology with
environmentally benign Ag2S sensitizer for efficient light
harvesting and enhanced visible-light photocatalysis. Inorganic Chemistry 53: 8902-8912.
Kim,
K.S., Kwon, T.S., Yang, J.S. & Yang, J.W. 2007. Simultaneous removal of
chlorinated contaminants by pervaporation for the reuse of a surfactant. Desalination 205: 87-96.
Kumar,
S.G. & Rao, K.S.R.K. 2015. Zinc oxide based photocatalysis: Tailoring surface-bulk
structure and related interfacial charge carrier dynamics for better
environmental applications. RSC Advances 5: 3306-3342.
Laudadio, G.
& Noël, T. 2021. 1 Photochemical Transformations in Continuous-Flow
Reactors. Walter de Gruyter GmbH.
Liang,
Q., Qiao, F., Cui, X. & Hou, X. 2019. Controlling
the morphology of ZnO structures via low temperature
hydrothermal method and their optoelectronic application. Material Science and Semiconductor Processing 89: 154-160.
Liu,
H., Hu, Y., Zhang, Z., Liu, X., Jia, H. & Xu, B. 2015. Synthesis of
spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV
irradiation. Applied Surface Science 355: 644-652.
Maldonado,
C., Fierro, J.L.G., Coronado, J., Sánchez, B. & Reyes, P. 2010. Title of
Paper. Journal of the Chilean Chemical
Society 55(3): 404-407.
Martínez
Vargas, D.X., De la Rosa, J.R., Lucio-Ortiz, C.J., Hernández-Ramirez, A.,
Flores-Escamilla, G.A. & Garcia, C.D. 2015. Photocatalytic degradation of
trichloroethylene in a continuous annular reactor using Cu-doped TiO2 catalysts
by sol-gel synthesis. Applied Catalysis
B: Environmental 179: 249-261.
Miao,
J., Jia, Z., Lu, H.B., Habibi, D. & Zhang, L.C. 2014. Heterogeneous
photocatalytic degradation of mordant black 11 with ZnO nanoparticles under UV-Vis light. Journal
of the Taiwan Institute of Chemical Engineers 45: 1636-1641.
Mittal,
M., Sharma, M. & Pandey, O.P. 2016. Fast and quick degradation properties
of doped and capped ZnO nanoparticles under
UV–visible light radiations. Solar Energy 125: 51-64.
Pavithra,
M. & Jessie Raj, M.B. 2022. Synthesis of ultrasonic assisted
co-precipitated Ag/ZnO nanorods and their profound
anti-liver cancer and antibacterial properties. Materials Science and Engineering: B 278: 115653.
Pongwan, P., Inceesungvorn, B., Wetchakun, K., Phanichphant, S. & Wetchakun, N.
2012. Highly efficient visible-light-induced photocatalytic activity of Fe-doped TiO2 nanoparticles. Engineering Journal 16(3): 13-16.
Pudukudy, M.
& Yaakob, Z. 2015. Facile synthesis of quasi
spherical ZnO nanoparticles with excellent
photocatalytic activity. Journal of
Cluster Science 26: 1187-1201.
Shenoy, S., Tarafder, K.
& Sridharan, K. 2021. Bimetallic nanoparticles grafted ZnO hierarchical structures as efficient visible light driven photocatalyst: An
experimental and theoretical study. Journal
of Molecular Structure 1236: 130355.
Su, Y., Straathof, N.J.W., Hessel, V. & Noël, T. 2014.
Photochemical transformations accelerated in continuous-flow reactors: Basic
concepts and applications. Chemistry - A
European Journal 20(34): 10562-10589.
Sukriti,
Chand, P., Singh, V. & Kumar, D. 2020. Rapid visible light-driven
photocatalytic degradation using Ce-doped ZnO nanocatalysts. Vacuum 178: 109364.
Veerakumar, P., Sangili, A., Saranya, K., Pandikumar, A. & Lin, K.C. 2021. Palladium and silver
nanoparticles embedded on zinc oxide nanostars for
photocatalytic degradation of pesticides and herbicides. Chemical Engineering Journal 410: 128434.
Wang,
K.H., Jehng, J.M., Hsieh, Y.H. & Chang, C.Y.
2002. The reaction pathway for the heterogeneous photocatalysis of
trichloroethylene in gas phase. Journal
of Hazardous Materials 90(1): 63-75.
Wang,
J., Jiang, Z., Zhang, Z., Xie, Y., Lv, Y., Li, J., Deng, Y. & Zhang, X. 2009. Study on
inorganic oxidants assisted sonocatalytic degradation
of acid red B in presence of nano-sized ZnO powder. Separation
and Purification Technology 67: 38-43.
Wang,
J., Jiang, Z., Zhang, Z., Xie, Y., Wang, X., Xing,
Z., Xu, R. & Zhang, X. 2008. Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-size ZnO powder under ultrasonic irradiation. Ultrasonics Sonochemistry 15: 768-774.
Wu, B.,
Li, J. & Li, Q. 2019. Preparation and photoluminescence behavior of
Mn-doped nano-ZnO. Optik 188: 205-211.
*Corresponding author; email: pummarin.k@chula.ac.th
|