Sains Malaysiana 52(2)(2023):
641-653
http://doi.org/10.17576/jsm-2023-5202-24
Bayesian Estimation of Time
to Failure Distributions Based on Skew Normal Degradation Model: An Application
to GaAs Laser Degradation Data
(Anggaran Bayesian Masa untuk Taburan Kegagalan Berdasarkan Model Degradasi Normal Pencong: Aplikasi untuk Data Degradasi Laser
GaAs)
LAILA
NAJI BA DAKHN, MOHD AFTAR ABU BAKAR* & KAMARULZAMAN IBRAHIM
Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 30 June 2022/Accepted: 16 December 2022
Abstract
In this
paper, the Bayesian method which involves informative and weakly informative
priors are considered to estimate the parameters and percentiles of the time to
failure distribution. The parameters of the time to failure distribution and
its percentiles are determined based on linear degradation model where the
degradation parameter is assumed to follow the skew normal distribution. For
the prior distributions, location and scale parameters of the skew normal
distribution is assumed to follow the uniform distribution while the shape
parameter is assumed to follow gamma distribution. Two gamma priors are
considered, either informative or weakly informative prior, depending on the
assumed values of the hyper parameters. The performance of the method under the
different prior assumptions is compared using a simulation study based on
Markov Chain Monte Carlo method as well as a real data application. It is found
that the parameter estimation based on informative prior is more precise as
opposed to the weakly informative prior, especially in the case of small sample
size. In addition, the skew normal degradation model is compared to the
log-logistic degradation model through a simulation study and a real
application of GaAs laser data. When modeling the percentiles of the time to
failure distribution, results found based on the skew normal distribution is
generally found to be more precise, particularly for the higher percentile
values.
Keywords: Bayesian method; linear
degradation model; log-logistic distribution; skew normal distribution; time to
failure distribution
Abstrak
Dalam kertas ini, kaedah Bayesan yang melibatkan prior bermaklumat dan kurang bermaklumat dipertimbangkan untuk menganggar parameter dan persentil untuk taburan masa kegagalan. Parameter dan persentil bagi taburan masa kegagalan ditentukan berdasarkan model degradasi linear yang mana parameter degradasi diandaikan mengikuti taburan normal pencong. Untuk taburan prior, parameter skala dan lokasi bagi taburan normal pencong diandaikan mengikuti taburan seragam manakala parameter bentuk diandaikan mengikuti taburan gama. Dua prior gama yang dipertimbangkan, iaitu sama ada bermaklumat atau kurang bermaklumat, bergantung kepada nilai parameter hiper yang diandaikan. Prestasi kaedah berkenaan di bawah andaian yang berbeza dibandingkan menerusi kajian simulasi berdasarkan kaedah Rantai Markov Monte Carlo
dan juga aplikasi data sebenar. Didapati bahawa penganggaran parameter berdasarkan prior bermaklumat adalah lebih persis berbanding prior kurang bermaklumat, khususnya apabila saiz sampel kecil. Seterusnya, model degradasi normal pencong dibandingkan dengan model degradasi log-logistik menerusi kajian simulasi dan aplikasi data laser GaAs. Bila memodelkan persentil bagi taburan masa kegagalan, secara amnya, hasil menunjukkan bahawa keputusan berdasarkan taburan normal pencong adalah lebih persis, khususnya untuk persentil yang bernilai tinggi.
Kata kunci: Kaedah Bayesian; model degradasi linear; taburan log-logistik; taburan masa kegagalan; taburan normal pencong
REFERENCES
Al-haj Ebrahem,
M.,
Al-momani, N. & Eidous, O. 2021. Variable scale kernel density estimation
for simple linear degradation model. Electronic Journal of Applied
Statistical Analysis 14(2): 359-372.
https://doi.org/10.1285/i20705948v14n2p359
Albert, J. 2008. Bayesian Computation with R. 3rd ed. New York:
Springer.
Alhamidie, A.A., Kamarulzaman Ibrahim, Alodat, M.T. & Wan Zawiah Wan
Zin. 2019. Bayesian inference for linear regression under alpha-skew-normal
prior. Sains Malaysiana 48(1): 227-235.
Azzalini, A. 1985. A class of distributions which includes the normal
ones. Scandinavian Journal of Statistics 12(2): 171-178.
Dakhn, L.N.B., Ebrahem M.A-H. & Eidous, O. 2017. Semi-parametric
method to estimate the time-to- failure distribution and its percentiles for
simple linear degradation model. Journal of Modern Applied Statistical Methods
Article 16(2): 322-346. https://doi.org/10.22237/jmasm/1509495420
Bayes, C.L. & Branco, M.D. 2007. Bayesian inference for the skewness
parameter of the scalar skew-normal distribution. Brazilian Journal of
Probability and Statistics 21: 141-163.
Bryson, M.C. 1974. Heavy-tailed distributions: Properties and tests. Technometrics 16(1): 61-68. https://doi.org/10.1080/00401706.1974.10489150
Chen, X., Sun, X., Ding, X. & Tang, J. 2019. The inverse gaussian
process with a skew-normal distribution as a degradation model. Communications
in Statistics - Simulation and Computation.
https://doi.org/10.1080/03610918.2018.1527351
Coro, G. 2017. Gibbs Sampling with JAGS : Behind the Scenes.
https://www.researchgate.net/publication/313905185
Ebrahem, M.A-h., Alodat, M.T. & Amani Arman. 2009. Estimating the
time-to-failure distribution of a linear degradation model using a Bayesian
approach. Applied Mathematical Sciences 3(1): 27-42.
Ebrahem, M.A-h., Eidous, O. & Kmail, G. 2009. Estimating percentiles
of time-to-failure distribution obtained from a linear degradation model using
kernel density method. Communications in Statistics - Simulation and
Computation 38(9): 1811-1822. https://doi.org/10.1080/03610910903145130
Eidous, O., Ebrahem, M.A-h. & Dakhn, L.N.B. 2017. Estimating the
time-to-failure distribution and its percentiles for simple linear degradation
model using double kernel method. Journal of Probability and Statistical
Science 15(1): 121-134.
Giraldo Gómez, N. 2005. An example of a heavy tailed distribution. Matematicas 13(1): 43-50.
Guure, C.B. & Noor Akma Ibrahim. 2014. Approximate Bayesian estimates
of Weibull parameters with Lindley’s method. Sains Malaysiana 43(9):
1433-1437.
Hamada, M. 2005. Using degradation data to assess reliability. Quality
Engineering 17(4): 615-620. https://doi.org/10.1080/08982110500225489
Jin, Z. 2016. Semiparametric accelerated failure time model for the
analysis of right censored data. Communications for Statistical Applications
and Methods 23(6): 467-478. https://doi.org/10.5351/csam.2016.23.6.467
Meeker, W.Q., Escobar, L.A. & Lu, C.J. 1999. Accelerated degradation
tests: Modeling and analysis. Statistics Preprints 2: 1-24.
Meeker, W.Q. & Escobar, L.A. 1998. Statistical Method for
Reliability Data. New York: John Wiley and Sons, Inc.
Oliveira, R.P.B., Loschi, R.H. & Freitas, M.A. 2018. Skew-heavy-tailed
degradation models: An application to train wheel degradation. IEEE
Transactions on Reliability 67(1): 129-141.
https://doi.org/10.1109/TR.2017.2765485
Pan, D., Liu, J-B. & Yang, W. 2018. A new result on lifetime
estimation based on Skew-Wiener degradation model. Statistics and
Probability Letters 138: 157-164. https://doi.org/10.1016/j.spl.2018.03.009
Plummer, M. 2003. JAGS : A program for analysis of Bayesian
graphical models using Gibbs sampling. Distributed Statistical Computing.
https://www.r-project.org/nosvn/conferences/DSC-2003/Drafts/Plummer.pdf
Puggard, W., Niwitpong, S-a. & Niwitpong, S. 2022. Comparison analysis
on the coefficients of variation of two independent Birnbaum-Saunders
distributions by constructing confidence intervals for the ratio of
coefficients of variation. Sains Malaysiana 51(7): 2265-2281.
Rawashdeh, A., Ebrahem, M.A-h. & Momani, A. 2018. A Bayesian approach
to estimate the failure time distribution of a log-logistic degradation model. METRON 76: 155-176. https://doi.org/10.1007/s40300-018-0141-7
Robins, J. & Tsiatis, A.A. 1992. Semiparametric estimation of an
accelerated failuare time model with time-dependent covariates. Biometrika 79(2): 311-319.
Shafiq, M., Alamgir & Atif, M. 2016. On the estimation of three
parameters lognormal distribution based on fuzzy life time data. Sains
Malaysiana 45(11): 1773-1777.
Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & Van Der Linde, A. 2002.
Bayesian measures of model complexity and fit. Biostatistics 64(4):
583-616.
Thangjai, W., Niwitpong, S-A. & Niwitpong, S. 2021. A Bayesian
approach for estimation of coefficients of variation of normal distributions. Sains
Malaysiana 50(1): 261-278. https://doi.org/10.17576/jsm-2021-5001-25
Tsai, C-c. & Lin, C-t. 2015. Lifetime inference for highly reliable
products based on skew-normal accelerated destructive degradation test model. IEEE
Transactions on Reliability 64(4): 1340-1355.
*Corresponding
author; email: aftar@ukm.edu.my