Sains Malaysiana 52(2)(2023):
655-667
http://doi.org/10.17576/jsm-2023-5202-25
On the
Earthquake Distribution Modeling in Sumatra by Cauchy Cluster Process:
Comparing Log-Linear and Log-Additive Intensity Models
(Mengenai Pemodelan Taburan Gempa Bumi di Sumatera oleh
Proses Kelompok Cauchy: Membandingkan Model Keamatan Log-Linear dan Log-Tambahan)
TABITA YUNI SUSANTO, ACHMAD
CHOIRUDDIN* & JERRY DWI TRIJOYO PURNOMO
Department
of Statistics, Faculty of
Science and Data Analytics, Institut
Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
Received: 7 August 2022/Accepted: 16 November 2022
Abstract
Inhomogeneous
cluster point processes have been considered for modeling the distribution of
earthquake epicenters with the spatial trend and clustering patterns. In particular, the spatial trend is
assessed by the intensity model involving geological variables. However, for
intensity with a log-linear form, it may be too restrictive and not appropriate
for earthquake distribution. In this study, we consider the Cauchy cluster process with the log-additive
intensity model to analyze the distribution of major earthquake occurrences in
Sumatra, Indonesia. The estimation procedure follows the standard two-step
estimation technique, where the first step adapts the method for the
Generalized Additive Models (GAMs) using penalized iteratively reweighted least
squares (PIRLS) algorithm, and the second step employs the second-order
composite likelihood. For the earthquake analysis in Sumatra, the log-additive
intensity shows more flexibility to determine the contribution of each
geological factor, especially to capture the effect of the nearest distance to
the fault which is far from log-linear. In addition, compared to the log-linear
model, the Cauchy cluster process with a log-additive intensity model performs
better with a smaller Akaike Information Criterion’s (AIC) value and a sharper
envelope K-function. The estimated number of mainshocks is around 114 with
aftershocks spread by 14 km around the mainshocks. We detect three hotspots for
the major earthquake in Sumatra: the northern part (Aceh and North Sumatra),
the western part (Mentawai, Nias, and Simeulue), and Bengkulu.
Keywords: Disaster risk
reduction; earthquake modeling; generalized additive models; spatial point
process; subduction
Abstrak
Proses titik kelompok tidak homogen telah dipertimbangkan untuk memodelkan taburan pusat gempa bumi dengan arah aliran ruang dan corak kelompok. Khususnya, trend ruang dinilai oleh model keamatan yang melibatkan pemboleh ubah geologi. Walau bagaimanapun, untuk keamatan dengan bentuk log-linear, ia mungkin terlalu terkawal dan tidak sesuai untuk taburan gempa bumi. Dalam kajian ini,
kami mempertimbangkan proses kelompok Cauchy dengan model keamatan log-tambahan untuk menganalisis taburan kejadian gempa bumi besar di Sumatera,
Indonesia. Prosedur anggaran mengikut teknik anggaran dua langkah piawai dengan langkah pertama menyesuaikan kaedah untuk Model Tambahan Am (GAM) menggunakan algoritma kuasa dua terkecil ditimbang semula secara berulang (PIRLS) berhukum dan langkah kedua menggunakan kemungkinan komposit tertib kedua. Bagi analisis gempa bumi di Sumatera, keamatan log-tambahan menunjukkan lebih kefleksibelan untuk menentukan sumbangan setiap faktor geologi, terutamanya untuk menangkap kesan jarak terdekat dengan sesar yang jauh daripada log-linear. Di samping itu, berbanding model log-linear, proses kelompok Cauchy dengan model keamatan log-tambahan berprestasi lebih baik dengan nilai Kriteria Maklumat
Akaike (AIC) yang lebih kecil dan fungsi K sampul yang lebih tajam. Anggaran bilangan gegaran utama adalah sekitar 114 dengan gegaran susulan tersebar sejauh 14 km di sekitar gegaran utama. Kami mengesan tiga titik panas untuk gempa bumi besar di Sumatera: bahagian utara (Aceh dan Sumatera Utara), bahagian barat (Mentawai, Nias dan Simeulue) dan Bengkulu.
Kata kunci:
Model tambahan am; pemodelan gempa bumi; pengurangan risiko bencana; proses titik ruang; subduksi
REFERENCES
Anwar,
S., Yaseen, M. & Mahmood, S.A. 2023. Higher order Gibbs point process
modeling of 2005-Kashmir earthquakes. Modeling Earth Systems and Environment 9: 1335-1347.
Baddeley,
A., Rubak, E. & Turner, R. 2015. Spatial Point Patterns: Methodology and
Applications with R. Boca Raton: CRC Press.
BMKG.
2019. Katalog Gempabumi Signifikan dan Merusak 1821-2018. T. Prasetya &
Daryono. Pusat Gempabumi dan Tsunami Kedeputian Bidang Geofisika Badan
Meteorologi Klimatologi dan Geofisika: Jakarta.
Choiruddin,
A., Aisah, Trisnisa, F. & Iriawan, N. 2021. Quantifying the effect of
geological factors on distribution of earthquake occurrences by inhomogeneous
Cox processes. Pure and Applied Geophysics 178(5): 1579-1592.
Choiruddin,
A., Susanto, T.Y., Husain, A. & Kartikasari, Y.M. 2023. kppmenet: Combining
the kppm and elastic net regularization for inhomogeneous Cox point process
with correlated covariates. Under revison.
Choiruddin, A., Susanto, T.Y. & Metrikasari, R. 2021.
Two-step estimation for modeling the earthquake occurrences in Sumatra by
Neyman-Scott Cox point processes. In Communications in Computer and
Information Science, edited by Mohamed, A., Yap, B.W., Zain, J.M.,
Berry, M.W. Singapore: Springer. 1489: 146-159.
https://doi.org/10.1007/978-981-16-7334-4_11
D’Angelo,
N., Siino, M., D’Alessandro, A. & Adelfio, G. 2022. Local spatial
log-Gaussian Cox processes for seismic data. AStA Advances in Statistical
Analysis 106: 633-671.
Geng,
J., Shi, W. & Hu, G. 2021. Bayesian nonparametric nonhomogeneous Poisson
process with applications to USGS earthquake data. Spatial Statistics 41: 100495.
Ghorbani,
M. 2013. Cauchy cluster process. Metrika 76(5): 697-706.
Husain, A. & Choiruddin, A. 2021. Poisson and Logistic regressions for inhomogeneous multivariate point processes: A case study in the Barro Colorado Island plot. In Soft Computing in Data Science. SCDS 2021. Communications in Computer and Information Science, vol 1489, edited by Mohamed, A., Yap, B.W., Zain, J.M. & Berry, M.W. Singapore: Springer. https://doi.org/10.1007/978-981-16-7334-4_22
Ibrahim.
2019. BMKG Soft Launching Uji Coba Sistem Peringatan Dini Gempa. https://www.bmkg.go.id/press-release/?p=bmkg-soft-launching-uji-coba-sistem-peringatan-dini-gempa&tag=press-release&lang=ID.
Iftimi,
A., Cronie, O. & Montes, F. 2019. Second-order analysis of marked
inhomogeneous spatiotemporal point processes: Applications to earthquake data. Scandinavian
Journal of Statistics 46(3): 661-685.
Jalilian,
A. 2017. Modelling and classification of species abundance: A case study in the
Barro Colorado Island plot. Journal of Applied Statistics 44(13):
2401-2409.
Møller,
J. & Waagepetersen, R.P. 2004. Statistical Inference and Simulation for
Spatial Point Processes. Boca Raton: CRC Press.
Nasional,
P.S.G. 2017. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat Litbang
Perumahan dan Pemukiman, Kementerian Pekerjaan Umum dan Perumahan Rakyat
(National Center for Earthquake Studies. Indonesian Seismic Sources and Seismic
Hazard Maps 2017. Center for Research.
Ogata,
Y. 1988. Statistical models for earthquake occurrences and residual analysis
for point processes. Journal of the American Statistical Association 83(401): 9-27.
Ogata,
Y. 2006. Monitoring of anomaly in the aftershock sequence of the 2005
earthquake of M7. 0 off coast of the western Fukuoka, Japan, by the ETAS model. Geophysical Research Letters 33(1).
Pedersen,
E.J., Miller, D.L., Simpson, G.L. & Ross, N. 2018. Hierarchical generalized
additive models: An introduction with mgcv. PeerJ 7:e6876.
Pratiwi,
H., Haryanto, W., Subanti, S., Mangku, I.W. & Ferawati, K. 2021. A
self-exciting point process with cyclic component, trend component, triggering
function, and response function. AIP Conference Proceedings. 2329:
060033.
Pratiwi,
H., Rini, L.S. & Mangku, I.W. 2018. Marked point process for modelling
seismic activity (case study in Sumatra and Java). Journal of Physics:
Conference Series 1022(1): 12004.
Siino,
M., Adelfio, G., Mateu, J., Chiodi, M. & D’Alessandro, A. 2017. Spatial
pattern analysis using hybrid models: An application to the Hellenic
seismicity. Stochastic Environmental Research and Risk Assessment 31(7):
1633-1648.
Sosilawati,
Handayani, A., Wahyudi, A.R., Mahendra, Z.A., Massudi, W., Febrianto, S. &
Suhendri, N.A. 2017. Sinkronisasi Program dan Pembiayaan Pembangunan Jangka
Pendek 2018-2020. Keterpaduan
Pengembangan Kawasan dengan Infrastruktur PUPR Pulau Jawa, Volume 1. Pusat Pemrograman dan
Evaluasi Keterpaduan Infrastruktur Pupr, Badan Pengembangan Infrastruktur
Wilayah, Kementerian Pekerjaan Umum dan Perumahan Rakyat.
Trisnisa, F., Metrikasari, R., Rabbanie, R., Sakdiyah, K. & Choiruddin, A. 2019. Model inhomogeneous spatial Cox processes untuk pemetaan risiko gempabumi di pulau Jawa. Inferensi 2(2): 107-111.
Triyono,
R. 2015. Ancaman gempabumi di Sumatera tidak hanya bersumber dari Mentawai
megathrust. Geofisika Klas I Padang Panjang.
Türkyilmaz,
K., van Lieshout, M.N.M. & Stein, A. 2013. Comparing the Hawkes and trigger
process models for aftershock sequences following the 2005 Kashmir earthquake. Mathematical
Geosciences 45(2): 149-164.
U.S.
Geological Survey (USGS). Search Earthquake Catalog.
https://earthquake.usgs.gov/earthquakes/search/.
Wood,
S.N. 2017. Generalized Additive Models: An Introduction with R. (2nd
ed). Boca Raton: CRC Press.
Youngman,
B.D. & Economou, T. 2017. Generalised additive point process models for
natural hazard occurrence. Environmetrics 28(4): e2444.
*Corresponding
author; email: choiruddin@its.ac.id