Sains Malaysiana 52(3)(2023): 967-979
http://doi.org/10.17576/jsm-2023-5203-20
Decellularized and Genipin Crosslinked Human Umbilical Cord Artery and Vein for
Potential Use as Peripheral Nerve Conduit
(Pautan Silang Arteri dan Urat Tali Pusat Manusia Dinyahsel dan Genipin untuk Potensi Kegunaan sebagai Konduit Saraf Periferi)
NABILA SYAHIDA BINTI ZAILAN1,
NISRIENA AZLIN BINTI MD ISA1, MUHAMMAD ASYRAF BIN HUMAYOON KABIR1,
SYAHIDA RABIA BINTI SYED ALI1, MUHAMAD FIRDAUS BIN NORISMAN1,
SITI A. M. IMRAN1, MOHAMAD FIKERI ISHAK1, MOHD
REUSMAAZRAN YUSOF2 & YOGESWARAN LOKANATHAN1,*
1Centre for
Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff,
Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
2Industrial
Technology Division (BTI), Malaysian Nuclear Agency, Bangi,
43000 Kajang, Selangor Darul Ehsan, Malaysia
Received: 30 November
2022/Accepted: 3 February 2023
Abstract
Critical gap peripheral nerve injury, commonly caused
by motor vehicle accidents, results in dysfunctional nerve and impaired body
function. Our study aims to develop a conduit from decellularized and genipin crosslinked human umbilical cord artery and vein for future use in critical nerve gap
injury treatments. Human umbilical cord arteries (HUCA) and veins (HUCV) were
divided into native (nHUCA and nHUCV), decellularized (dHUCA and dHUCV) and genipin-crosslinked (clHUCA and clHUCV) groups. Both
the decellularized and crosslinked groups were decellularized, and subsequently, the clHUCA and clHUCV groups were crosslinked with 0.1%, 0.4% and 0.7% (w/v) genipin. The HUCA and HUCV were then studied for decellularization efficiency, crosslinking index, biodegradation,
swelling ratio, ultrastructure analysis, flexibility and mechanical strength.
In addition, mesenchymal stem cells isolated from Wharton’s jelly were seeded
into HUCA and HUCV for biocompatibility studies. The degradation test showed
that nHUCV and dHUCV degraded at day 7 compared to other groups that did not show any degradation
even after 21 days. Biocompatibility studies showed that the conduits crosslinked with 0.4% (w/v) genipin were successfully seeded and was having the most amount of seeded cells. In
conclusion, the decellularization and genipin crosslinking of human umbilical cord artery and
vein enabled successful in fabrication of conduit with suitable properties such
as reduced swelling, flexibility, porosity and mechanical strength, with potential
in tissue engineering applications.
Keywords: Decellularization; genipin; nerve
conduit; nerve injury; umbilical cord artery
Abstrak
Kecederaan saraf periferi jurang kritikal, biasanya disebabkan oleh kemalangan kenderaan bermotor mengakibatkan saraf tidak berfungsi dan fungsi badan akan terjejas. Kajian ini bertujuan untuk membangunkan konduit daripada arteri dan urat tali pusat manusia yang dinyahsel dan genipin untuk kegunaan masa hadapan dalam rawatan kecederaan jurang saraf kritikal. Arteri tali pusat manusia (HUCA) dan urat (HUCV) dibahagikan kepada kumpulan asli (nHUCA dan nHUCV), dinyahsel (dHUCA dan dHUCV) dan pautan silang genipin (clHUCA dan clHUCV). Kedua-dua kumpulan dinyahsel dan pautan silang telah dinyahsel dan seterusnya, kumpulan clHUCA dan clHUCV telah dipaut silang dengan 0.1%, 0.4% dan 0.7% (w/v) genipin. HUCA dan HUCV kemudiannya dikaji untuk kecekapan dinyahsel, indeks paut silang, biodegradasi, nisbah bengkak, analisis ultrastruktur, kefleksibelan dan kekuatan mekanikal. Di samping itu, sel stem mesinkima yang diasingkan daripada jeli Wharton telah disemai ke dalam HUCA dan HUCV untuk kajian biokeserasian. Ujian degradasi menunjukkan nHUCV dan dHUCV merosot pada hari ke-7 berbanding kumpulan lain yang tidak menunjukkan sebarang degradasi walaupun selepas 21 hari. Kajian biokeserasian menunjukkan bahawa konduit yang dipaut silang dengan genipin 0.4% (w/v) berjaya dibenih dan mempunyai jumlah sel yang paling banyak. Kesimpulannya, dinyahsel dan pautan silang genipin arteri dan urat tali pusat manusia telah berjaya menghasilkan konduit dengan sifat yang sesuai seperti mengurangkan bengkak, kefleksibelan, keliangan dan kekuatan mekanikal dengan potensi dalam aplikasi kejuruteraan tisu.
Kata kunci: Arteri tali pusat; dinyahsel; genipin; kecederaan saraf; konduit saraf
REFERENCES
Badylak, S.F., Freytes, D.O. & Gilbert, T.W. 2009.
Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia 5(1): 1-13.
Clements, B.A.,
Bushman, J., Murthy, N.S., Ezra, M., Pastore, C.M. & Kohn, J. 2016. Design
of barrier coatings on kink-resistant peripheral nerve conduits. Journal of Tissue Engineering 7:
2041731416629471.
Crouzier, T.,
McClendon, T., Tosun, Z. & McFetridge, P.S. 2009. Inverted human umbilical
arteries with tunable wall thicknesses for nerve regeneration. Journal of Biomedical Materials Research
Part A 89A(3): 818-828.
Deal, N.D.,
Griffin, J.W. & Hogan, M.V. 2012. Nerve conduits for nerve repair or
reconstruction. Journal of the American Academy of Orthopaedic Surgeons 20(2):
63-68.
Geuna, S., Tos,
P., Titolo, P., Ciclamini, D., Beningo, T. & Battiston, B. 2014. Update on
nerve repair by biological tubulization. Journal
of Brachial Plexus and Peripheral Nerve Injury 9(01): e16-e21.
Gobinathan, S.,
Zainol, S.S., Azizi, S.F., Iman, N.M., Muniandy, R., Hasmad, H.N., Yusof,
M.R.b., Husain, S., Abd Aziz, H. & Lokanathan, Y. 2018. Decellularization
and genipin crosslinking of amniotic membrane suitable for tissue engineering
applications. Journal of Biomaterials
Science, Polymer Edition 29(17): 2051-2067.
Gordon, T.,
Sulaiman, O. & Boyd, J.G. 2003. Experimental strategies to promote
functional recovery after peripheral nerve injuries. Journal of the Peripheral Nervous System 8(4): 236-250.
Hussin, H.M.,
Idrus, R.H. & Lokanathan, Y. 2018. Development of nerve conduit using
decellularized human umbilical cord artery seeded with Centella asiatica induced-neurodifferentiated human mesenchymal stem cell. Sains
Malaysiana 47(11): 2789-2798.
Hwang, M.N. &
Ederer, G.M. 1975. Rapid hippurate hydrolysis method for presumptive
identification of group B streptococci. Journal
of Clinical Microbiology 1(1): 114-115.
Kaizawa, Y.,
Kakinoki, R., Ikeguchi, R., Ohta, S., Noguchi, T., Takeuchi, H., Oda, H.,
Yurie, H. & Matsuda, S. 2017. A nerve conduit containing a vascular bundle
and implanted with bone marrow stromal cells and decellularized allogenic nerve
matrix. Cell Transplantation 26(2): 215-228.
Lai, J.Y., Li,
Y.T., Cho, C.H. & Yu, T.C. 2012. Nanoscale modification of porous gelatin
scaffolds with chondroitin sulfate for corneal stromal tissue engineering. International Journal of Nanomedicine 7:
1101.
Liao, I.C., Wan,
H., Qi, S., Cui, C., Patel, P., Sun, W. & Xu, H. 2013. Preclinical
evaluations of acellular biological conduits for peripheral nerve regeneration. Journal of Tissue Engineering 4:
2041731413481036.
Lim, J., Razi,
Z.R.M., Law, J., Nawi, A.M., Idrus, R.B.H. & Ng, M.H. 2016. MSCs can be
differentially isolated from maternal, middle and fetal segments of the human
umbilical cord. Cytotherapy 18(12):
1493-1502.
Lokanathan, Y.,
Ng, M.H., Hasan, S., Ali, A., Mahmod, M., Htwe, O., Roohi, S.A., Idrus, R.B.H.,
Abdullah, S. & Naicker, A.S. 2014. Olfactory ensheathing cells seeded
muscle-stuffed vein as nerve conduit for peripheral nerve repair: A nerve
conduction study. Journal of Bioscience
and Bioengineering 118(2): 231-234.
Massaro, M.S.,
Pálek, R., Rosendorf, J., Červenková, L., Liška, V. & Moulisová, V.
2021. Decellularized xenogeneic scaffolds in transplantation and tissue
engineering: Immunogenicity versus positive cell stimulation. Materials Science and Engineering: C 127: 112203.
Mirmalek-Sani,
S.H., Sullivan, D.C., Zimmerman, C., Shupe, T.D. & Petersen, B.E. 2013.
Immunogenicity of decellularized porcine liver for bioengineered hepatic
tissue. The American Journal of Pathology 183(2): 558-565.
Muheremu, A. &
Ao, Q. 2015. Past, present, and future of nerve conduits in the treatment of
peripheral nerve injury. BioMed Research
International 2015: 237507.
Ott, H.C.,
Matthiesen, T.S., Goh, S.K., Black, L.D., Kren, S.M., Netoff, T.I. &
Taylor, D.A. 2008. Perfusion-decellularized matrix: using nature's platform to
engineer a bioartificial heart. Nature Medicine 14(2): 213-221.
Sun, F., Zhou, K.,
Mi, W.J. & Qiu, J.H. 2011. Combined use of decellularized allogeneic artery
conduits with autologous transdifferentiated adipose-derived stem cells for
facial nerve regeneration in rats. Biomaterials 32(32): 8118-8128.
Tomasula, P.M.
2009. Using dairy ingredients to produce edible films and biodegradable
packaging materials. In Dairy-Derived
Ingredients, edited by Corredig, M. Woodhead Publishing. pp. 589-624.
Wojtkiewicz, D.M.,
Saunders, J., Domeshek, L., Novak, C.B., Kaskutas, V. & Mackinnon, S.E.
2015. Social impact of peripheral nerve injuries. Hand 10(2): 161-167.
Wood, M.D., Kemp,
S.W., Weber, C., Borschel, G.H. & Gordon, T. 2011. Outcome measures of
peripheral nerve regeneration. Annals of
Anatomy-Anatomischer Anzeiger 193(4): 321-333.
Yoo, J.S., Kim,
Y.J., Kim, S.H. & Choi, S.H. 2011. Study on genipin: A new alternative
natural crosslinking agent for fixing heterograft tissue. The Korean Journal of Thoracic and Cardiovascular Surgery 44(3):
197.
Yuan, Y.,
Chesnutt, B., Utturkar, G., Haggard, W., Yang, Y., Ong, J. & Bumgardner, J.
2007. The effect of cross-linking of chitosan microspheres with genipin on
protein release. Carbohydrate Polymers 68(3): 561-567.
Zhan, X., Gao, M.,
Jiang, Y., Zhang, W., Wong, W.M., Yuan, Q., Su, H., Kang, X., Dai, X. &
Zhang, W. 2013. Nanofiber scaffolds facilitate functional regeneration of
peripheral nerve injury. Nanomedicine:
Nanotechnology, Biology and Medicine 9(3): 305-315.
*Corresponding
author; email: lyoges@ppukm.ukm.edu.my
|