Sains Malaysiana 52(3)(2023): 981-992

http://doi.org/10.17576/jsm-2023-5203-21

 

Characteristics of Different Groups of Flare-CME in the Minimum to Rising Phase of Solar Cycle 24

(Pencirian Kumpulan Berbeza Suar-CME dalam Fasa Minimum hingga Fasa Menaik Kitaran Suria 24)

 

N. MOHAMAD ANSOR1,2, Z.S. HAMIDI1,2,* & N.N.M. SHARIFF2,3

 

1School of Physics and Material Science, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

2Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

3Academy Contemporary Islamic Studies, Universiti Teknologi MARA, 40450 Shah Alam, Darul Ehsan, Malaysia

 

Received: 17 July 2022/Accepted: 9 January 2023

 

Abstract

Coronal Mass Ejections are significant solar events that involve intense explosions of magnetic fields and mass particles out from the corona. As the hot plasma are brought by the solar wind into the Earth’s magnetosphere, geomagnetic storm is generated and causing malfunctions in telecommunication and power systems. This study is aimed to investigate the distribution of flare-CMEs characteristics which occurred at the beginning phase of solar cycle 24, from Dec. 2008 until Dec. 2013. In the analysis, all events are classified according to their class of flares associated with the CMEs. The CMEs that are accompanied by A, B, and C flares are categorized as low group flare-CME, while CMEs with M and X flares are placed under high group flare-CME. Afterwards, they are analyzed to observe the distribution of their main CME properties; velocity, acceleration and angular width. At the end of the study, we found that velocity and angular width are the two properties that have high influential for high and low groups, with R value of 0.36 and 0.67, respectively. Most of high group flare-CMEs showed up in 360° as well as low group flare-CMEs if the associated minor flares lasted longer than 30 min. Furthermore, the speed range of 360° high and low class flare-CME cannot be defined from the results since all of them propagated at fluctuating velocity. Hence, it is believed that full halo CMEs have no velocity boundary as they can travel from 500 km/s and go beyond 2500 km/s. 

 

Keywords: CME properties; coronal mass ejections, solar cycle 24; solar flare

 

Abstrak

Lentingan Jisim Korona ialah peristiwa suria yang ketara yang melibatkan letupan kuat medan magnet dan zarah jisim keluar daripada korona. Apabila plasma panas dibawa oleh angin suria ke dalam magnetosfera Bumi, ribut geomagnet terhasil dan menyebabkan kerosakan dalam sistem telekomunikasi dan kuasa. Kajian ini bertujuan untuk mengkaji taburan ciri suar-CME yang berlaku pada fasa permulaan kitaran suria 24, dari Dis. 2008 hingga Dis. 2013. Dalam analisis ini, semua kejadian dikelaskan mengikut kelas suar mereka yang dikaitkan dengan CME. CME yang diikuti dengan suar A, B dan C dikategorikan sebagai kumpulan rendah suar-CME, manakala CME dengan suar M dan X diletakkan di bawah kumpulan tinggi suar-CME. Selepas itu, semua kejadian dianalisis untuk memerhatikan taburan sifat CME utama; halaju, pecutan dan lebar sudut. Pada akhir kajian, kami mendapati halaju dan lebar sudut adalah dua sifat yang mempunyai pengaruh tinggi untuk kumpulan tinggi dan rendah dengan nilai R masing-masing 0.36 dan 0.67. Kebanyakan suar-CME kelas tinggi muncul dalam 360° serta suar-CME kelas rendah jika suar kecil yang berkaitan berlangsung lebih lama daripada 30 minit. Tambahan pula, julat kelajuan 360° kumpulan tinggi dan rendah suar-CME tidak boleh ditakrifkan daripada keputusan kerana kesemuanya merambat pada halaju turun naik. Oleh itu, dipercayai bahawa CME halo penuh tidak mempunyai sempadan halaju kerana ia boleh bergerak dari 500 km/s dan melepasi 2500 km/s.

 

Kata kunci: Kitaran suria 24; lentingan jisim korona; sifat CME; suar suria

 

REFERENCES

Andrews, M.D. & Howard, R.A. 2001. A two-type classification of LASCO coronal mass ejection. Space Science Reviews 95: 147-163.

Anna Lakshmi, M., Umapathy, S., Prakash, O. & Vasanth, V. 2011. Studies on some properties of coronal mass ejections based on angular width. Astrophysics and Space Science 335(2): 373-378. DOI: 10.1007/s10509-011-0768-9

Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simmett, G.M., Bedford, D.K. & Eyles, C.J. 1995. The Large Angle Spectroscopic Coronagraph (LASCO): Visible light coronal imaging and spectroscopy. Solar Physics 162(1-2): 357-402. DOI: 10.1007/BF00733434

Chandra, R., Chen, P.F., Fulara, A., Srivastava, A.K. & Uddin, W. 2018. A study of a long duration B9 flare-CME event and associated shock. Advances in Space Research 61(2): 705-714. DOI: 10.1016/j.asr.2017.10.034

Compagnino, A., Romano, P. & Zuccarello, F. 2017. A statistical study of CME properties and of the correlation between flares and CMEs over solar cycles 23 and 24. Solar Physics 292(1). DOI: 10.1007/s11207-016-1029-4

Gosling, J.T. 1994. Correction to ‘The Solar Flare Myth’. Journal of Geophysical Research 99(A3): 4259. DOI: 10.1029/94JA00015

Harrison, R.A. 1995. The nature of solar flares associated with coronal mass ejection. Astronomy and Astrophysics 304: 585.

Heliophysics Knowledgeable Event. 2022.

Kay, H.R.M., Harra, L.K., Matthews, S.A., Culhane, J.L. & Green, L.M. 2003. The soft x-ray characteristics of solar flares, both with and without associated CMEs. Astronomy & Astrophysics 400(2): 779-784. DOI: 10.1051/0004-6361:20030095

Kenton, W. 2020. Pearson Coefficient.

MacQueen, R.M. & Fisher, R.R. 1983. The kinematics of solar inner coronal transients. Solar Physics 89: 89-102.

Mawad, R., Abdel-Sattar, W. & Farid, H.M. 2021. An association of CMEs with solar flares detected by Fermi γ-Ray burst monitor during solar cycle 24. New Astronomy 82. DOI: 10.1016/j.newast.2020.101450

Mittal, N. & Narain, U. 2010. Initiation of CMEs: A review. Journal of Atmospheric and Solar-Terrestrial Physics 72(9-10): 643-652. DOI: 10.1016/j.jastp.2010.03.011

Möller, A. 2022. GOES X-Ray Flux Archive.

Moon, Y.J., Choe, G.S., Wang, H., Park, Y.D., Gopalswamy, N., Yang, G. & Yashiro, S. 2002. A statistical study of two classes of coronal mass ejections. The Astrophysical Journal 581: 694.

Nicewicz, J. & Michalek, G. 2016. Classification of CMEs based on their dynamics. Solar Physics 291(5): 1417. DOI: 10.1007/s11207-016-0903-4

NOAA National Centers for Environmental Information. 2022.

Pant, V., Majumdar, S., Patel, R., Chauhan, A., Banerjee, D. & Gopalswamy, N. 2021. Investigating width distribution of slow and fast CMEs in solar cycles 23 and 24. Frontiers in Astronomy and Space Sciences 8. DOI: 10.3389/fspas.2021.634358

SDO Data. 2022.

Shaltout, A.M.K., Amin, E.A., Beheary, M.M. & Hamid, R.H. 2019. A statistical study of CME-associated flare during the Solar Cycle 24. Advances in Space Research 63(7): 2300-2311. DOI: 10.1016/j.asr.2018.12.022

Sheeley, N.R., Walters, J.H., Wang, Y.M. & Howard, R.A. 1999. Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. Journal of Geophysical Research: Space Physics 104(A11): 24739-24767. DOI: 10.1029/1999ja900308

Suryanarayana, G.S. & Balakrishna, K.M. 2018. CME productivity associated with solar flare peak x-ray emission flux. Advances in Space Research 61(9): 2482-2489. DOI: 10.1016/j.asr.2018.02.008

Tousey, R. 1973. The solar corona. Space Research Conference. pp. 713-730.

Wolfson, R. & Dlamini, B. 1997. Cross-field currents: An energy source for coronal mass ejections? The Astrophysical Journal. p. 483.

Yashiro, S., Gopalswamy, N., Akiyama, S., Michalek, G. & Howard, R.A. 2005. Visibility of coronal mass ejections as a function of flare location and intensity. Journal of Geophysical Research 110(A12). DOI: 10.1029/2005JA011151

Youssef, M. 2012. On the relation between the CMEs and the solar flares. NRIAG Journal of Astronomy and Geophysics 1(2): 172-178. DOI: 10.1016/j.nrjag.2012.12.014

 

*Corresponding author; email: zetysh@uitm.edu.my

 

 

   

 

previous