Sains Malaysiana 52(3)(2023): 981-992
http://doi.org/10.17576/jsm-2023-5203-21
Characteristics
of Different Groups of Flare-CME in the Minimum to Rising Phase of Solar Cycle
24
(Pencirian
Kumpulan Berbeza Suar-CME dalam Fasa Minimum hingga Fasa Menaik Kitaran Suria
24)
N.
MOHAMAD ANSOR1,2, Z.S. HAMIDI1,2,* & N.N.M. SHARIFF2,3
1School of Physics and Material Science, Faculty of
Applied Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
2Institute of Science, Universiti Teknologi MARA, 40450
Shah Alam, Selangor Darul Ehsan, Malaysia
3Academy Contemporary Islamic Studies, Universiti
Teknologi MARA, 40450 Shah Alam, Darul Ehsan, Malaysia
Received:
17 July 2022/Accepted: 9 January 2023
Abstract
Coronal Mass
Ejections are significant solar events that involve intense explosions of
magnetic fields and mass particles out from the corona. As the hot plasma are
brought by the solar wind into the Earth’s magnetosphere, geomagnetic storm is
generated and causing malfunctions in telecommunication and power systems. This
study is aimed to investigate the distribution of flare-CMEs characteristics
which occurred at the beginning phase of solar cycle 24, from Dec. 2008 until
Dec. 2013. In the analysis, all events are classified according to their class
of flares associated with the CMEs. The CMEs that are accompanied by A, B, and
C flares are categorized as low group flare-CME, while CMEs with M and X flares are placed under high group flare-CME. Afterwards,
they are analyzed to observe the distribution of their main CME properties;
velocity, acceleration and angular width. At the end of the study, we found
that velocity and angular width are the two properties that have high
influential for high and low groups,
with R value of 0.36 and 0.67, respectively. Most of high group flare-CMEs showed up in
360° as well as low group flare-CMEs
if the associated minor flares lasted longer than 30 min. Furthermore, the
speed range of 360° high and low class flare-CME cannot be defined from the
results since all of them propagated at fluctuating velocity. Hence, it is
believed that full halo CMEs have no velocity boundary as they can travel from
500 km/s and go beyond 2500 km/s.
Keywords: CME properties; coronal mass ejections, solar cycle 24; solar flare
Abstrak
Lentingan Jisim Korona ialah peristiwa suria yang ketara
yang melibatkan letupan kuat medan magnet dan zarah jisim keluar daripada korona.
Apabila plasma panas dibawa oleh angin suria ke dalam magnetosfera Bumi, ribut
geomagnet terhasil dan menyebabkan kerosakan dalam sistem telekomunikasi dan
kuasa. Kajian ini bertujuan untuk mengkaji taburan ciri suar-CME yang berlaku
pada fasa permulaan kitaran suria 24, dari Dis. 2008 hingga Dis. 2013. Dalam
analisis ini, semua kejadian dikelaskan mengikut kelas suar mereka yang
dikaitkan dengan CME. CME yang diikuti dengan suar A, B dan C dikategorikan sebagai kumpulan rendah suar-CME, manakala CME dengan
suar M dan X diletakkan di bawah kumpulan tinggi suar-CME. Selepas itu, semua kejadian dianalisis untuk memerhatikan taburan sifat CME utama;
halaju, pecutan dan lebar sudut. Pada akhir kajian, kami mendapati halaju dan
lebar sudut adalah dua sifat yang mempunyai pengaruh tinggi untuk kumpulan
tinggi dan rendah dengan nilai R masing-masing 0.36 dan 0.67. Kebanyakan
suar-CME kelas tinggi muncul dalam 360° serta suar-CME kelas rendah jika suar
kecil yang berkaitan berlangsung lebih lama daripada 30 minit. Tambahan pula,
julat kelajuan 360° kumpulan tinggi dan rendah suar-CME tidak boleh ditakrifkan daripada
keputusan kerana kesemuanya merambat pada halaju turun naik. Oleh itu,
dipercayai bahawa CME halo penuh tidak mempunyai sempadan halaju kerana ia
boleh bergerak dari 500 km/s dan melepasi 2500 km/s.
Kata kunci: Kitaran suria 24; lentingan jisim korona; sifat CME; suar suria
REFERENCES
Andrews, M.D. & Howard, R.A.
2001. A two-type classification of LASCO coronal mass ejection. Space
Science Reviews 95: 147-163.
Anna Lakshmi, M., Umapathy, S., Prakash, O. & Vasanth,
V. 2011. Studies on some properties of coronal mass ejections based on angular
width. Astrophysics and Space Science 335(2): 373-378. DOI:
10.1007/s10509-011-0768-9
Brueckner, G.E., Howard, R.A., Koomen,
M.J., Korendyke, C.M., Michels,
D.J., Moses, J.D., Socker, D.G., Dere,
K.P., Lamy, P.L., Llebaria,
A., Bout, M.V., Schwenn, R., Simmett,
G.M., Bedford, D.K. & Eyles, C.J. 1995. The Large
Angle Spectroscopic Coronagraph (LASCO): Visible light coronal imaging and
spectroscopy. Solar Physics 162(1-2): 357-402. DOI: 10.1007/BF00733434
Chandra, R., Chen, P.F., Fulara, A., Srivastava, A.K. & Uddin, W. 2018. A study
of a long duration B9 flare-CME event and associated shock. Advances in
Space Research 61(2): 705-714. DOI: 10.1016/j.asr.2017.10.034
Compagnino, A., Romano, P. & Zuccarello, F. 2017. A statistical study of CME properties
and of the correlation between flares and CMEs over solar cycles 23 and 24. Solar
Physics 292(1). DOI: 10.1007/s11207-016-1029-4
Gosling, J.T. 1994. Correction to ‘The
Solar Flare Myth’. Journal of Geophysical Research 99(A3): 4259. DOI:
10.1029/94JA00015
Harrison, R.A. 1995. The nature of
solar flares associated with coronal mass ejection. Astronomy and
Astrophysics 304: 585.
Heliophysics Knowledgeable Event. 2022.
Kay, H.R.M., Harra,
L.K., Matthews, S.A., Culhane, J.L. & Green, L.M.
2003. The soft x-ray characteristics of solar flares, both with and without
associated CMEs. Astronomy & Astrophysics 400(2): 779-784. DOI:
10.1051/0004-6361:20030095
Kenton, W. 2020. Pearson
Coefficient.
MacQueen, R.M. & Fisher, R.R. 1983.
The kinematics of solar inner coronal transients. Solar Physics 89: 89-102.
Mawad, R., Abdel-Sattar,
W. & Farid, H.M. 2021. An association of CMEs
with solar flares detected by Fermi γ-Ray burst monitor during solar cycle
24. New Astronomy 82. DOI: 10.1016/j.newast.2020.101450
Mittal, N. & Narain, U. 2010. Initiation of CMEs: A review. Journal
of Atmospheric and Solar-Terrestrial Physics 72(9-10): 643-652. DOI:
10.1016/j.jastp.2010.03.011
Möller, A. 2022. GOES X-Ray Flux
Archive.
Moon, Y.J., Choe,
G.S., Wang, H., Park, Y.D., Gopalswamy, N., Yang, G.
& Yashiro, S. 2002. A statistical study of two classes of coronal mass
ejections. The Astrophysical Journal 581: 694.
Nicewicz, J. & Michalek,
G. 2016. Classification of CMEs based on their dynamics. Solar Physics 291(5): 1417. DOI: 10.1007/s11207-016-0903-4
NOAA National Centers for Environmental
Information. 2022.
Pant, V., Majumdar,
S., Patel, R., Chauhan, A., Banerjee, D. & Gopalswamy,
N. 2021. Investigating width distribution of slow and fast CMEs in solar cycles
23 and 24. Frontiers in Astronomy and Space Sciences 8. DOI:
10.3389/fspas.2021.634358
SDO Data. 2022.
Shaltout, A.M.K., Amin, E.A., Beheary, M.M. & Hamid, R.H. 2019. A statistical study
of CME-associated flare during the Solar Cycle 24. Advances in Space
Research 63(7): 2300-2311. DOI: 10.1016/j.asr.2018.12.022
Sheeley, N.R., Walters, J.H., Wang, Y.M.
& Howard, R.A. 1999. Continuous tracking of coronal outflows: Two kinds of
coronal mass ejections. Journal of Geophysical Research: Space Physics 104(A11): 24739-24767. DOI: 10.1029/1999ja900308
Suryanarayana, G.S. & Balakrishna,
K.M. 2018. CME productivity associated with solar flare peak x-ray emission
flux. Advances in Space Research 61(9): 2482-2489. DOI:
10.1016/j.asr.2018.02.008
Tousey, R. 1973. The solar corona. Space Research Conference. pp. 713-730.
Wolfson, R. & Dlamini, B. 1997. Cross-field currents: An energy source
for coronal mass ejections? The Astrophysical Journal. p. 483.
Yashiro, S., Gopalswamy,
N., Akiyama, S., Michalek, G. & Howard, R.A.
2005. Visibility of coronal mass ejections as a function of flare location and
intensity. Journal of Geophysical Research 110(A12). DOI:
10.1029/2005JA011151
Youssef, M. 2012. On the relation
between the CMEs and the solar flares. NRIAG Journal of Astronomy and
Geophysics 1(2): 172-178. DOI: 10.1016/j.nrjag.2012.12.014
*Corresponding author; email: zetysh@uitm.edu.my
|