Sains Malaysiana 52(5)(2023):
1453-1468
http://doi.org/10.17576/jsm-2023-5205-10
Analysis of Methylphenol Concentration in Selangor Rivers, Malaysia
using Solid Phase Extraction Technique Coupled with UV-Vis
Spectroscopy
(Analisis Kepekatan Metilfenol di Sungai-Sungai Selangor, Malaysia menggunakan Teknik Pengekstrakan Fasa Pepejal Digandingkan dengan Spektroskopi UV-Vis)
Nur ‘Izzah binti Ahmad Juanda1, Noorashikin Md Saleh1,*, Nor
Yuliana Yuhana1, Saliza Asman2 & Farhanini Yusoff3
1Department of Chemical and Process Engineering,
Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Department of Physics and Chemistry, Faculty of
Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, UTHM Pagoh Campus, Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84600 Muar, Johor Darul Takzim, Malaysia
3Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
Received: 12 January 2023/Accepted: 10 April 2023
Abstract
Methylphenol is
extensively produced from pharmaceuticals, agriculture, textiles, cosmetics,
and petrochemicals industries. It is a pollutant that can adversely affect
public health and the ecosystem. Following the issues raised, methylphenol extraction from Selangor rivers need to be
done to avoid adverse consequences. In this study, solid phase extraction (SPE) combined with
ultraviolet-visible spectroscopy (UV-Vis) detection at 271 nm was utilized to
extract methylphenol from Selangor rivers. The
challenges reported by applying the SPE technique was to identify the optimum
conditions for extraction to guarantee effective recovery of the extracted methylphenol. Therefore, this research aimed to develop an
extraction technique to extract methylphenol from
Selangor rivers. In this study, 3 mL Supel Swift-HLB
cartridges with bed weight of 60 mg were used as SPE cartridges. The optimum
conditions for methylphenol SPE were 3 mL methanol as
a conditioning solvent, 6 mL of pH 5 water sample with a contact time of 4 min
with adsorbent bed was practiced during sample loading, 3 mL of acetonitrile as
washing solvent, and 12 mL of acetone as the elution solvent. The
concentrations of methylphenol detected at five
different locations collected from Sungai Klang,
Sungai Selangor, and Sungai Langat ranged from 5 to 6 mg L-1. SPE
coupled with UV-Vis is an appropriate method for methylphenol extraction as it simplifies sample preparation, is time saving, and can achieve
a high percentage recovery of methylphenol.
Keywords: Methylphenol; pollutant extraction; Selangor river water;
solid phase extraction; UV-Vis analysis
Abstrak
Kepadatan penduduk yang semakin
meningkat di Selangor telah menyebabkan pembangunan pesat dalam aktiviti
perindustrian dan domestik. Perkembangan ini telah menyebabkan kesan negatif
terhadap alam sekitar terutamanya di sungai-sungai Selangor. Metilfenol yang
dihasilkan secara meluas daripada industri farmaseutikal, pertanian, tekstil,
kosmetik dan petrokimia merupakan bahan pencemar yang boleh menjejaskan kesihatan
awam dan ekosistem. Berikutan isu yang dibangkitkan, pengekstrakan metil fenol
di sungai Selangor perlu dilakukan bagi mengelakkan kesan buruk. Dalam kajian
ini, gabungan pengekstrakan fasa pepejal (SPE) dengan pengesanan
spektrofotometri ultralembayung nampak (UV-Vis) pada 271 nm digunakan untuk
mengekstrak metil fenol dalam sampel air sungai Selangor. Cabaran yang
dilaporkan dalam menggunakan teknik SPE termasuk mengenal pasti keadaan terbaik
untuk digunakan semasa pengekstrakan bagi menjamin pemulihan berkesan metil
fenol yang diekstrak. Justeru, kajian ini bertujuan untuk menentukan gabungan
parameter optimum bagi SPE metil fenol dan untuk menentukan kepekatan metil
fenol dalam sampel air sungai di Selangor. Kartrij SPE yang digunakan dalam kajian
ini ialah kartrij SupelTM Swift-HLB 3 mL dengan berat lapisan
penjerap 60 mg. Keadaan optimum yang ditentukan bagi SPE metil fenol ialah 3 mL
metanol sebagai pelarut keadaan, 6 mL sampel air pada pH 5 serta masa sentuhan
4 minit dengan lapisan penjerap digunakan semasa langkah pemuatan sampel, 3 mL
aseton sebagai pelarut pencuci dan isi padu 12 mL aseton digunakan sebagai
pelarut elusi. Kepekatan metil fenol yang dikesan di Sungai Klang, Sungai
Selangor serta Sungai Langat adalah dalam lingkungan 5 hingga 6 mg L-1.
SPE-UV-Vis ialah kaedah yang sesuai untuk pengekstrakan metil fenol kerana ia
memudahkan penyediaan sampel, menjimatkan masa serta membolehkan peratusan
pemulihan metil fenol yang tinggi dicapai.
Kata kunci: Air Sungai di Selangor; analisis UV-Vis; metilfenol; pencemar; pengekstrakan fasa pepejal
REFERENCES
Ahmad, M.,
Abdullah, H., Yuhana, N.Y., Yuliarto, B. & Othman, M.H.D. 2022. Enhanced
photovoltaic performance of various temperature TiO2-SiO2-Ni-GO
dye-sensitized solar cells assembled with PAN gel electrolyte. Journal of Sol-Gel Science and Technology 101: 269-278.
Ariffin,
M.M., Sohaimi, N.M., Yih, B.S. & Saleh, N.M. 2019. Magnetite nanoparticles
coated with surfactant Sylgard 309 and its application as an adsorbent for
paraben extraction from pharmaceutical and water samples. Analytical Methods 11(32): 4126-4136.
Arias, P.G.,
Martínez-Pérez-Cejuela, H., Combès, A., Pichon, V., Pereira, E.,
Herrero-Martínez, J.M. 2020. Selective solid-phase extraction of
organophosphorus pesticides and their oxon-derivatives from water samples using
molecularly imprinted polymer followed by high-performance liquid
chromatography with UV detection. J.
Chromatogr. A. 1626: 461346.
Belay, K.
2016. Advanced Analytical Microextraction Techniques and There Applications: A
Review. Journal of Biology, Agriculture
and Healthcare 6(7): 13-20.
Basheer, O.A., Hanafiah, M. & Abdulhasan, M.J.
2017. A study on water quality from Langat River, Selangor. Acta Sci. Malaysia 1(2): 1-4.
Dan, S.F.A.M., Jaafar, J.A., Saleh,
N.M., Timmiati, S.N. & Kamarudin, N.H.N. 2022. Temperature variation on
doxorubicin adsorption by mesoporous silica nanoparticles and its effect
towards release rate. Journal of Chemical
Engineering and Industrial Biotechnology 8(1): 8-13.
Donato, F.F.,
Martins, M.L., Munaretto, J.S., Prestes, O.D., Adaime, M.B. & Zanella, R.
2015. Development of a multiresidue method for pesticide analysis in drinking
water by solid phase extraction and determination by gas and liquid
chromatography with triple quadrupole tandem mass spectrometry. J. Braz. Chem. Soc. 26(10): 2077-2087.
https://doi.org/10.5935/0103-5053.20150192
Emiroğlu,
E., Yuvali, D., Sarp, G., Yilmaz, E. & Narin, İ. 2021. Magnetic solid
phase extraction of erythrosine (E127) in pharmaceutical samples with
Fe3O4/C-nanodots hybrid material prior to spectrophotometric analysis. Microchem. J. 170(August): 16-21.
Farid, A.M., Lubna, A., Choo, T.G., Rahim, M.C. &
Mazlin, M. 2016. A review on the chemical pollution of Langat River, Malaysia. Asian J. Water, Environ Pollut. 13(1):
9-15.
Farhan, H.M.
& Sapawe, N. 2020. A review on the water problem associate with organic
pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today Proc. 31: A141-A150.
Ferial, G.,
Amirhassan, A., Mohd, Y.B., Yuliana, Y. & Massimiliano, F. 2021. Role of
different types of nanomaterials against diagnosis, prevention and therapy of
COVID-19. Sustainable Cities and Society 72: 103046.
Fiehn, O.
& Jekel, M. 1997. Analysis of phenolic compounds in industrial wastewater
with high-performance liquid chromatography and post-column reaction detection. J. Chromatogr. A. 769(2): 189-200.
Hazrina,
H.Z., Noorashikin, M.S., Beh, S.Y., Loh, S.H. & Zain, N.N.M. 2018.
Formulation of chelating agent with surfactant in cloud point extraction of
methylphenol in water. Royal Society Open
Science 5(7): 180070-180081.
Han, F., Gao,
Y., Hu, F., Yu, X., Xie, H., Li, H., Zhao, Y., Kimura, S., Zhang, Y.,
Zubizarreta, M.E., Xiao, S., Zhan, M. & Zheng, W. 2019. Solid-phase
extraction of seventeen alternative flame retardants in water as determined by
ultra-high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1602: 64-73.
He, H., Liu,
S., Meng, Z. & Hu, S. 2014. Dispersive liquid-liquid microextraction for
the determination of phenols by acetonitrile stacking coupled with
sweeping-micellar electrokinetic chromatography with large-volume injection. J. Chromatogr. A 1361: 291-302.
Idris, S.A.,
Markom, M., Abd Rahman, N. & Ali, J.M. 2019. Quantitative HPLC analysis of
flavonoid in three different solvent extracts in leaves of Gynura procumbens. Journal of
Physics: Conference Series 1349:
012003.
Jalili, V.,
Barkhordari, A. & Ghiasvand, A. 2020. A comprehensive look at solid-phase
microextraction technique: A review of reviews. Microchem. J. 152: 104319.
Kraševec, I.
& Prosen, H. 2018. Solid-phase extraction of polar benzotriazoles as
environmental pollutants: A review. Molecules 23(10): 2501.
Maranata,
G.J., Surya, N.O. & Hasanah, A.N. 2021. Optimising factors affecting solid
phase extraction performances of molecular imprinted polymer as recent sample
preparation technique. Heliyon 7(1):
e05934.
Mencin, M.,
Mikulic‐petkovsek, M., Veberič, R. & Terpinc, P. 2021.
Development and optimisation of solid‐phase extraction of extractable and
bound phenolic acids in spelt (Triticum
spelta l.) seeds. Antioxidants 10(7): 1085.
Nik Nur Atiqah Nik Wee, Nur Irsalina Mohd Juber, Mohd
Nor Faiz Norrrahim & Noorashikin Md Saleh. 2020. Evaluation and
optimization of a new approach on phenol extraction from real water. Sains Malaysiana 49(10): 2247-2486.
Norseyrihan,
M.S., Noorashikin, M.S., Adibah, M.S.N. & Yusoff, F. 2016. Cloud point
extraction of methylphenol in water samples with low viscosity of non-ionic
surfactant Sylgard 309 coupled with high-performance liquid chromatography. Sep. Sci. Technol. 51(14): 2386-2393.
Noorashikin,
M.S., Raoov, M., Mohamad, S. & Abas, M.R. 2014. Extraction of parabens from
water samples using cloud point extraction with a non-ionic surfactant with
β-cyclodextrin as modifier. Journal
of Surfactants and Detergents 17(4): 747-758.
Noorashikin,
M.S., Mohamad, S. & Abas, M.R.B. 2013. Cloud point extraction (CPE) of
parabens using nonionic surfactant phase separation. Separation Science and Technology 48(11): 1675-1681.
Ntombela,
S.C. & Mahlambi, P.N. 2019. Method development and application for triazine
herbicides analysis in water, soil and sediment samples from KwaZulu-Natal. Journal of Environmental Science and Health,
Part B 54(7): 569-579.
Othman,
N.T.A. & Harry, I.A. 2021. Development of a fluidized bed dryer for drying
of a sago bagasse. Pertanika Journal of
Science & Technology 29: 1-10.
Shakir, R.M.,
Saoud, S.A., Jasim, H.S. & Hussain, D.F. 2021. Synthesis, antioxidant
activity and molecular docking study of 1,2,4-Triazole and their corresponding
fused rings containing 2-Methylphenol. Int.
J. Drug Deliv. Technol. 11(2): A500-A511.
Shazana,
A.R., Masturah, M. & Noorashikin, M.S. 2022. Parameter effects and
optimisation in supercritical fluid extraction of phenolic compounds from Labisia pumila. Separations 9(12): 385.
Soto-Hernandez,
M., Palma-Tenango, M. & Garcia-Mateos, M. 2017. Phenolic Compounds - Natural Sources, Importance and Applications.
IntechOpen. https://www.intechopen.com/books/6029
Tsukagoshi,
K., Kameda, T., Yamamoto, M. & Nakajima, R.S. 2002. Separation and
determination of phenolic compounds by capillary electrophoresis with
chemiluminescence detection. J.
Chromatogr. A. 978(1-2): 213-220.
Veloo, K.V.
& Ibrahim, N.A.S. 2021. Analytical extraction methods and sorbents’
development for simultaneous determination of organophosphorus pesticides’
residues in food and water samples: A review. Molecules 26(18): 5495.
Wang, D.,
Chen, X., Feng, J. & Sun, M. 2022. Recent advances of ordered mesoporous
silica materials for solid-phase extraction. Journal of Chromatography A 1675: 463157.
Zhang, X.,
Ma, X., Li, X., Li, C., Wang, R. & Chen, M. 2018. Development of
ultra-sensitive method for determination of trace atrazine herbicide in
environmental water using magnetic graphene oxide-based solid-phase extraction
coupled with dispersive liquid-liquid microextraction prior to gas
chromatography-mass spectrometry. Water
Air Soil Pollut. 229: 270.
*Corresponding
author; email: noorashikin@ukm.edu.my
|