Sains Malaysiana 52(5)(2023): 1453-1468

http://doi.org/10.17576/jsm-2023-5205-10

 

Analysis of Methylphenol Concentration in Selangor Rivers, Malaysia using Solid Phase Extraction Technique Coupled with UV-Vis Spectroscopy

(Analisis Kepekatan Metilfenol di Sungai-Sungai Selangor, Malaysia menggunakan Teknik Pengekstrakan Fasa Pepejal Digandingkan dengan Spektroskopi UV-Vis)

 

NurIzzah binti Ahmad Juanda1, Noorashikin Md Saleh1,*, Nor Yuliana Yuhana1, Saliza Asman2 & Farhanini Yusoff3

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, UTHM Pagoh Campus, Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84600 Muar, Johor Darul Takzim, Malaysia

3Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

Received: 12 January 2023/Accepted: 10 April 2023

 

Abstract

Methylphenol is extensively produced from pharmaceuticals, agriculture, textiles, cosmetics, and petrochemicals industries. It is a pollutant that can adversely affect public health and the ecosystem. Following the issues raised, methylphenol extraction from Selangor rivers need to be done to avoid adverse consequences. In this study, solid phase extraction (SPE) combined with ultraviolet-visible spectroscopy (UV-Vis) detection at 271 nm was utilized to extract methylphenol from Selangor rivers. The challenges reported by applying the SPE technique was to identify the optimum conditions for extraction to guarantee effective recovery of the extracted methylphenol. Therefore, this research aimed to develop an extraction technique to extract methylphenol from Selangor rivers. In this study, 3 mL Supel Swift-HLB cartridges with bed weight of 60 mg were used as SPE cartridges. The optimum conditions for methylphenol SPE were 3 mL methanol as a conditioning solvent, 6 mL of pH 5 water sample with a contact time of 4 min with adsorbent bed was practiced during sample loading, 3 mL of acetonitrile as washing solvent, and 12 mL of acetone as the elution solvent. The concentrations of methylphenol detected at five different locations collected from Sungai Klang, Sungai Selangor, and Sungai Langat ranged from 5 to 6 mg L-1. SPE coupled with UV-Vis is an appropriate method for methylphenol extraction as it simplifies sample preparation, is time saving, and can achieve a high percentage recovery of methylphenol.

 

Keywords: Methylphenol; pollutant extraction; Selangor river water; solid phase extraction; UV-Vis analysis

 

Abstrak

Kepadatan penduduk yang semakin meningkat di Selangor telah menyebabkan pembangunan pesat dalam aktiviti perindustrian dan domestik. Perkembangan ini telah menyebabkan kesan negatif terhadap alam sekitar terutamanya di sungai-sungai Selangor. Metilfenol yang dihasilkan secara meluas daripada industri farmaseutikal, pertanian, tekstil, kosmetik dan petrokimia merupakan bahan pencemar yang boleh menjejaskan kesihatan awam dan ekosistem. Berikutan isu yang dibangkitkan, pengekstrakan metil fenol di sungai Selangor perlu dilakukan bagi mengelakkan kesan buruk. Dalam kajian ini, gabungan pengekstrakan fasa pepejal (SPE) dengan pengesanan spektrofotometri ultralembayung nampak (UV-Vis) pada 271 nm digunakan untuk mengekstrak metil fenol dalam sampel air sungai Selangor. Cabaran yang dilaporkan dalam menggunakan teknik SPE termasuk mengenal pasti keadaan terbaik untuk digunakan semasa pengekstrakan bagi menjamin pemulihan berkesan metil fenol yang diekstrak. Justeru, kajian ini bertujuan untuk menentukan gabungan parameter optimum bagi SPE metil fenol dan untuk menentukan kepekatan metil fenol dalam sampel air sungai di Selangor. Kartrij SPE yang digunakan dalam kajian ini ialah kartrij SupelTM Swift-HLB 3 mL dengan berat lapisan penjerap 60 mg. Keadaan optimum yang ditentukan bagi SPE metil fenol ialah 3 mL metanol sebagai pelarut keadaan, 6 mL sampel air pada pH 5 serta masa sentuhan 4 minit dengan lapisan penjerap digunakan semasa langkah pemuatan sampel, 3 mL aseton sebagai pelarut pencuci dan isi padu 12 mL aseton digunakan sebagai pelarut elusi. Kepekatan metil fenol yang dikesan di Sungai Klang, Sungai Selangor serta Sungai Langat adalah dalam lingkungan 5 hingga 6 mg L-1. SPE-UV-Vis ialah kaedah yang sesuai untuk pengekstrakan metil fenol kerana ia memudahkan penyediaan sampel, menjimatkan masa serta membolehkan peratusan pemulihan metil fenol yang tinggi dicapai.

 

Kata kunci: Air Sungai di Selangor; analisis UV-Vis; metilfenol; pencemar; pengekstrakan fasa pepejal

 

REFERENCES

Ahmad, M., Abdullah, H., Yuhana, N.Y., Yuliarto, B. & Othman, M.H.D. 2022. Enhanced photovoltaic performance of various temperature TiO2-SiO2-Ni-GO dye-sensitized solar cells assembled with PAN gel electrolyte. Journal of Sol-Gel Science and Technology 101: 269-278.

Ariffin, M.M., Sohaimi, N.M., Yih, B.S. & Saleh, N.M. 2019. Magnetite nanoparticles coated with surfactant Sylgard 309 and its application as an adsorbent for paraben extraction from pharmaceutical and water samples. Analytical Methods 11(32): 4126-4136.

Arias, P.G., Martínez-Pérez-Cejuela, H., Combès, A., Pichon, V., Pereira, E., Herrero-Martínez, J.M. 2020. Selective solid-phase extraction of organophosphorus pesticides and their oxon-derivatives from water samples using molecularly imprinted polymer followed by high-performance liquid chromatography with UV detection. J. Chromatogr. A. 1626: 461346.

Belay, K. 2016. Advanced Analytical Microextraction Techniques and There Applications: A Review. Journal of Biology, Agriculture and Healthcare 6(7): 13-20.

Basheer, O.A., Hanafiah, M. & Abdulhasan, M.J. 2017. A study on water quality from Langat River, Selangor. Acta Sci. Malaysia 1(2): 1-4.

Dan, S.F.A.M., Jaafar, J.A., Saleh, N.M., Timmiati, S.N. & Kamarudin, N.H.N. 2022. Temperature variation on doxorubicin adsorption by mesoporous silica nanoparticles and its effect towards release rate. Journal of Chemical Engineering and Industrial Biotechnology 8(1): 8-13.

Donato, F.F., Martins, M.L., Munaretto, J.S., Prestes, O.D., Adaime, M.B. & Zanella, R. 2015. Development of a multiresidue method for pesticide analysis in drinking water by solid phase extraction and determination by gas and liquid chromatography with triple quadrupole tandem mass spectrometry. J. Braz. Chem. Soc. 26(10): 2077-2087. https://doi.org/10.5935/0103-5053.20150192

Emiroğlu, E., Yuvali, D., Sarp, G., Yilmaz, E. & Narin, İ. 2021. Magnetic solid phase extraction of erythrosine (E127) in pharmaceutical samples with Fe3O4/C-nanodots hybrid material prior to spectrophotometric analysis. Microchem. J. 170(August): 16-21.

Farid, A.M., Lubna, A., Choo, T.G., Rahim, M.C. & Mazlin, M. 2016. A review on the chemical pollution of Langat River, Malaysia. Asian J. Water, Environ Pollut. 13(1): 9-15.

Farhan, H.M. & Sapawe, N. 2020. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today Proc. 31: A141-A150.

Ferial, G., Amirhassan, A., Mohd, Y.B., Yuliana, Y. & Massimiliano, F. 2021. Role of different types of nanomaterials against diagnosis, prevention and therapy of COVID-19. Sustainable Cities and Society 72: 103046.

Fiehn, O. & Jekel, M. 1997. Analysis of phenolic compounds in industrial wastewater with high-performance liquid chromatography and post-column reaction detection. J. Chromatogr. A. 769(2): 189-200.

Hazrina, H.Z., Noorashikin, M.S., Beh, S.Y., Loh, S.H. & Zain, N.N.M. 2018. Formulation of chelating agent with surfactant in cloud point extraction of methylphenol in water. Royal Society Open Science 5(7): 180070-180081.

Han, F., Gao, Y., Hu, F., Yu, X., Xie, H., Li, H., Zhao, Y., Kimura, S., Zhang, Y., Zubizarreta, M.E., Xiao, S., Zhan, M. & Zheng, W. 2019. Solid-phase extraction of seventeen alternative flame retardants in water as determined by ultra-high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1602: 64-73.

He, H., Liu, S., Meng, Z. & Hu, S. 2014. Dispersive liquid-liquid microextraction for the determination of phenols by acetonitrile stacking coupled with sweeping-micellar electrokinetic chromatography with large-volume injection. J. Chromatogr. A 1361: 291-302.

Idris, S.A., Markom, M., Abd Rahman, N. & Ali, J.M. 2019. Quantitative HPLC analysis of flavonoid in three different solvent extracts in leaves of Gynura procumbens. Journal of Physics: Conference Series 1349: 012003.

Jalili, V., Barkhordari, A. & Ghiasvand, A. 2020. A comprehensive look at solid-phase microextraction technique: A review of reviews. Microchem. J. 152: 104319.

Kraševec, I. & Prosen, H. 2018. Solid-phase extraction of polar benzotriazoles as environmental pollutants: A review. Molecules 23(10): 2501.

Maranata, G.J., Surya, N.O. & Hasanah, A.N. 2021. Optimising factors affecting solid phase extraction performances of molecular imprinted polymer as recent sample preparation technique. Heliyon 7(1): e05934.

Mencin, M., Mikulic‐petkovsek, M., Veberič, R. & Terpinc, P. 2021. Development and optimisation of solid‐phase extraction of extractable and bound phenolic acids in spelt (Triticum spelta l.) seeds. Antioxidants 10(7): 1085.

Nik Nur Atiqah Nik Wee, Nur Irsalina Mohd Juber, Mohd Nor Faiz Norrrahim & Noorashikin Md Saleh. 2020. Evaluation and optimization of a new approach on phenol extraction from real water. Sains Malaysiana 49(10): 2247-2486.

Norseyrihan, M.S., Noorashikin, M.S., Adibah, M.S.N. & Yusoff, F. 2016. Cloud point extraction of methylphenol in water samples with low viscosity of non-ionic surfactant Sylgard 309 coupled with high-performance liquid chromatography. Sep. Sci. Technol. 51(14): 2386-2393.

Noorashikin, M.S., Raoov, M., Mohamad, S. & Abas, M.R. 2014. Extraction of parabens from water samples using cloud point extraction with a non-ionic surfactant with β-cyclodextrin as modifier. Journal of Surfactants and Detergents 17(4): 747-758.

Noorashikin, M.S., Mohamad, S. & Abas, M.R.B. 2013. Cloud point extraction (CPE) of parabens using nonionic surfactant phase separation. Separation Science and Technology 48(11): 1675-1681.

Ntombela, S.C. & Mahlambi, P.N. 2019. Method development and application for triazine herbicides analysis in water, soil and sediment samples from KwaZulu-Natal. Journal of Environmental Science and Health, Part B 54(7): 569-579. 

Othman, N.T.A. & Harry, I.A. 2021. Development of a fluidized bed dryer for drying of a sago bagasse. Pertanika Journal of Science & Technology 29: 1-10.

Shakir, R.M., Saoud, S.A., Jasim, H.S. & Hussain, D.F. 2021. Synthesis, antioxidant activity and molecular docking study of 1,2,4-Triazole and their corresponding fused rings containing 2-Methylphenol. Int. J. Drug Deliv. Technol. 11(2): A500-A511.

Shazana, A.R., Masturah, M. & Noorashikin, M.S. 2022. Parameter effects and optimisation in supercritical fluid extraction of phenolic compounds from Labisia pumila. Separations 9(12): 385.

Soto-Hernandez, M., Palma-Tenango, M. & Garcia-Mateos, M. 2017. Phenolic Compounds - Natural Sources, Importance and Applications. IntechOpen. https://www.intechopen.com/books/6029

Tsukagoshi, K., Kameda, T., Yamamoto, M. & Nakajima, R.S. 2002. Separation and determination of phenolic compounds by capillary electrophoresis with chemiluminescence detection. J. Chromatogr. A. 978(1-2): 213-220.

Veloo, K.V. & Ibrahim, N.A.S. 2021. Analytical extraction methods and sorbents’ development for simultaneous determination of organophosphorus pesticides’ residues in food and water samples: A review. Molecules 26(18): 5495.

Wang, D., Chen, X., Feng, J. & Sun, M. 2022. Recent advances of ordered mesoporous silica materials for solid-phase extraction. Journal of Chromatography A 1675: 463157.

Zhang, X., Ma, X., Li, X., Li, C., Wang, R. & Chen, M. 2018. Development of ultra-sensitive method for determination of trace atrazine herbicide in environmental water using magnetic graphene oxide-based solid-phase extraction coupled with dispersive liquid-liquid microextraction prior to gas chromatography-mass spectrometry. Water Air Soil Pollut. 229: 270.

 

*Corresponding author; email: noorashikin@ukm.edu.my

 

 

 

 

previous