Sains Malaysiana 52(5)(2023):
1435-1451
http://doi.org/10.17576/jsm-2023-5205-09
Effect of Alkali
Treatment and Fibre Composition on the Performance of
Pineapple Leaf Fibre-Polyvinyl Alcohol Composites
(Kesan
Rawatan Alkali dan Komposisi Serat terhadap Prestasi Komposit Alkohol
Serat-Polivinil Daun Nanas)
HANIS NURAFIQAH ZUBAIRI1, NOORDINI
M. SALLEH2 & NOR MAS MIRA ABD RAHMAN1,*
1Department
of Chemistry, Faculty of Science, Universiti Malaya,
50603 Kuala Lumpur, Federal Territory, Malaysia
2Centre
for Fundamental and Frontier Sciences in Nanostructure Self-Assembly,
Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
Received: 18 October 2022/Accepted: 7 April
2023
Abstract
This paper studied the properties of composites based on polyvinyl
alcohol reinforced with pineapple leaf fibres (PALF/PVA). The surface of
pineapple leaf fibres (PALF) has been previously treated with 6% sodium
hydroxide solution. The influence of fibre loading and fibre surface treatment
were examined. Analysis by Fourier transform infrared spectroscopy (FTIR), and
X-ray diffraction (XRD) displayed physico-chemical
changes on treated PALF/PVA composites compared to untreated PALF/PVA
composites. The results from thermogravimetric analysis (TGA) showed that the introduction of untreated PALF into the
composites enhanced the thermal stability of the composites. Progressive
improvement of thermal stability was discovered by associating treated PALF
with the composites. The treated PALF composites produced also improved
mechanical properties with increasing fibre content. Differential
scanning calorimetric (DSC) analyses showed no significant changes in melting
temperatures upon incorporating untreated PALF into the PALF/PVA composites. The best
improvement in tensile strength value was obtained for treated PALF composite
having 3 wt% of fibre loading, with enhancements of
about 11% and 54%, compared to untreated PALF composites and plain PVA matrix,
respectively.
Keywords: Alkali treatment; interfacial adhesion;
MD2-pineapple leaf fibres; polymer composites;
polyvinyl alcohol
Abstrak
Kertas ini mengkaji
sifat komposit berdasarkan polivinil alkohol yang diperkuat dengan serat daun
nanas (PALF/PVA). Permukaan serat daun nanas (PALF) sebelum ini telah dirawat
dengan larutan natrium hidroksida 6%. Pengaruh komposisi serat dan rawatan
permukaan serat telah dikaji. Analisis oleh Fourier-transformasi infra merah
(FTIR) dan pembelauan sinar-X (XRD) memaparkan perubahan fiziko-kimia pada
komposit PALF/PVA yang dirawat berbanding komposit PALF/PVA yang tidak dirawat.
Keputusan daripada analisis termogravimetri (TGA) menunjukkan bahawa kehadiran
PALF yang tidak dirawat ke dalam komposit meningkatkan kestabilan terma
komposit. Peningkatan progresif kestabilan terma ditemui dengan kehadiran PALF
yang dirawat di dalam komposit. Peningkatan kandungan serat yang dirawat di
dalam komposit juga didapati menyebabkan peningkatan dalam sifat mekanikal.
Analisis kalorimetrik pengimbasan pembezaan (DSC) menunjukkan tiada perubahan
ketara dalam suhu lebur apabila PALF yang tidak dirawat digabungkan ke dalam
komposit PALF/PVA. Penambahbaikan paling terbaik dalam nilai kekuatan tegangan
diperoleh oleh komposit dengan PALF yang dirawat pada kandungan serat 3 wt%
dengan peningkatan sebanyak 11% dan 54%, berbanding komposit PALF yang tidak
dirawat dan matriks PVA.
Kata kunci: Komposit polimer; lekatan antara muka; polivinil alkohol; rawatan alkali; serat daun nanas MD-2
REFERENCES
Akhtar, M.N., Sulong, A.B., Radzi,
M.K.F., Ismail, N.F., Raza, M.R., Muhamad, N. & Khan, M.A. 2016. Influence
of alkaline treatment and fiber loading on the physical and mechanical
properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials
International 26(6): 657-664.
Amash, A. & Zugenmaier, P. 2000.
Morphology and properties of isotropic and oriented samples of cellulose
fibre–polypropylene composites. Polymer 41(4): 1589-1596.
Amiandamhen, S., Meincken, M. &
Tyhoda, L. 2020. Natural fibre modification and its influence on fibre-matrix
interfacial properties in biocomposite materials. Fibers and Polymers 21: 677-689.
Asim, M., Jawaid, M., Abdan, K. &
Nasir, M. 2018. Effect of alkali treatments on physical and mechanical strength
of pineapple leaf fibres. IOP Conference
Series: Materials Science and Engineering 290(1): 012030.
Asim, M., Abdan, K., Jawaid, M.,
Nasir, M., Dashtizadeh, Z., Ishak, M. & Hoque, M.E. 2015. A review on
pineapple leaves fibre and its composites. International
Journal of Polymer Science 6: 1-16.
Challabi, A., Chieng, B.W., Ibrahim,
N., Ariffin, H. & Zainuddin, N. 2019. Effect of superheated steam treatment
on the mechanical properties and dimensional stability of PALF/PLA biocomposite. Polymers 11(3): 482.
Chand, N. & Fahim, M. 2021. 1 -
Natural fibers and their composites. In Tribology
of Natural Fiber Polymer Composites. 2nd ed. Woodhead Publishing.
Chü, N. 1970. The conformation of the
anhydrocellobiose units in cellulose I and II. Journal of Applied Polymer
Science 14(12): 3129-3136.
Devi, L.U., Bhagawan, S.S. &
Thomas, S. 1997. Mechanical properties of pineapple leaf fiber-reinforced
polyester composites. Journal of Applied
Polymer Science 64(9): 1739-1748.
Fan, M. & Naughton, A. 2016.
Mechanisms of thermal decomposition of natural fibre composites. Composites Part B: Engineering 88:
1-10.
Fiore, V., Di Bella, G. &
Valenza, A. 2015. The effect of alkaline treatment on mechanical properties of
kenaf fibers and their epoxy composites. Composites Part B: Engineering 68: 14-21.
Hamidon, M.H., Sultan, M.T.H.,
Ariffin, A.H. & Shah, A.U.M. 2019. Effects of fibre treatment on mechanical
properties of kenaf fibre reinforced composites: A review. Journal of Materials Research and Technology 8(3): 3327-3337.
Haz, A., Jablonsky, M., Surina, I.,
Kačík, F., Bubenikova, T. & Durkovic, J. 2019. Chemical composition
and thermal behavior of kraft lignins. Forests 10: 483.
Hidalgo-Salazar, M.A., Mina, J.H.
& Herrera-Franco, P.J. 2013. The effect of interfacial adhesion on the
creep behaviour of LDPE–Al–Fique composite materials. Composites Part B: Engineering 55: 345-351.
Hollaway, L.C. 2011. 1 - Key issues
in the use of fibre reinforced polymer (FRP) composites in the rehabilitation
and retrofitting of concrete structures. In Service
Life Estimation and Extension of Civil Engineering Structures. Woodhead
Publishing.
Islam, M., Pickering, K. &
Foreman, N. 2011. Influence of alkali fiber treatment and fiber processing on
the mechanical properties of hemp/epoxy composites. Journal of Applied Polymer Science 119: 3696-3707.
Ismail, N. & Ishak, Z. 2018.
Effect of fiber loading on mechanical and water absorption capacity of
polylactic acid/polyhydroxybutyrate-co-hydroxyhexanoate/kenaf composite. IOP Conference Series: Materials Science
and Engineering 368: 012014.
Jayasekara, R., Harding, I., Bowater,
I., Christie, G.B.Y. & Lonergan, G.T. 2004. Preparation, surface
modification and characterisation of solution cast starch PVA blended films. Polymer Testing 23(1): 17-27.
Jin, E., Guo, J., Yang, F., Zhu, Y.,
Song, J., Jin, Y. & Rojas, O.J. 2016. On the polymorphic and morphological
changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to
CNC-II. Carbohydrate Polymers 143:
327-335.
Joseph, S.T., Pillai, C.K.S., Prasad,
V.S., Groeninckx, G. & Sarkissova, M. 2003. The thermal and crystallisation
studies of short sisal fibre reinforced polypropylene composites. Composites
Part A: Applied Science and Manufacturing 34: 253-266.
Kabir, M.M., Wang, H., Aravinthan,
T., Cardona, F. & Lau, K.T. 2011. Effects of natural fibre surface on
composite properties: A review. Proceedings
of the 1st International Postgraduate Conference on Engineering,
Designing and Developing the Built Environment for Sustainable Wellbeing (eddBE
2011). pp. 94-99.
Kalambettu, A., Damodaran, A.,
Dharmalingam, S. & Vallam. 2015. Evaluation of biodegradation of pineapple
leaf fiber reinforced PVA composites. Journal of Natural Fibers 12: 39-51.
Karimi, K. & Taherzadeh, M.J.
2016. A critical review of analytical methods in pretreatment of
lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology 200: 1008-1018.
Liu, W., Misra, M., Askeland, P.,
Drzal, L.T. & Mohanty, A.K. 2005. ‘Green’ composites from soy based plastic
and pineapple leaf fiber: Fabrication and properties evaluation. Polymer 46(8): 2710-2721.
Lopattananon, N., Panawarangkul, K.,
Sahakaro, K. & Ellis, B. 2006. Performance of pineapple leaf fiber–natural
rubber composites: The effect of fiber surface treatments. Journal of Applied Polymer
Science 102(2): 1974-1984.
Lu, Y., Lu, Y.C., Hu, H.Q., Xie,
F.J., Wei, X.Y. & Fan, X. 2017. Structural characterization of lignin and
its degradation products with spectroscopic methods. Journal of Spectroscopy 2017: 8951658.
McKeen, L.W. 2017. Introduction to
the mechanical, thermal, and permeation properties of plastics and elastomer
films. In Film Properties of Plastics and
Elastomers. 4th ed. William Andrew Publishing.
Mohamed, A.R. 2009. Characterization
of pineapple leaf fibers from selected Malaysian cultivars. Journal of Food, Agriculture &
Environment 7(1): 235-240.
Negawo, T.A., Polat, Y.,
Buyuknalcaci, F.N., Kilic, A., Saba, N. & Jawaid, M. 2019. Mechanical,
morphological, structural and dynamic mechanical properties of alkali treated
Ensete stem fibers reinforced unsaturated polyester composites. Composite Structures 207: 589-597.
Nopparut, A. & Amornsakchai, T.
2016. Influence of pineapple leaf fiber and it's surface treatment on molecular
orientation in, and mechanical properties of, injection molded nylon
composites. Polymer Testing 52:
141-149.
Nurazzi, N.M., Khalina, A., Sapuan,
S.M., Ilyas, R.A., Rafiqah, S.A. & Hanafee, Z.M. 2020. Thermal properties
of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid
composites. Journal of Materials Research
and Technology 9(2): 1606-1618.
Owonubi, S., Agwuncha, S., Anusionwu,
C., Revaprasadu, N. & Rotimi, S. 2019. Fiber-matrix relationship for composites
preparation. In Composites from Renewable and Sustainable Materials.
Intechopen.
Panyasart, K., Chaiyut, N.,
Amornsakchai, T. & Santawitee, O. 2014. Effect of surface treatment on the
properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia 56: 406-413.
Peng, Z. & Kong, L. 2007. A
thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polymer Degradation and Stability 92:
1061-1071.
Peppas, N.A. & Merrill, E.W.
1976. Differential scanning calorimetry of crystallized PVA hydrogels. Journal of Applied Polymer Science 20(6): 1457-1465.
Peresin, M.S., Habibi, Y., Zoppe,
J.O., Pawlak, J.J. & Rojas, O.J. 2010. Nanofiber composites of polyvinyl
alcohol and cellulose nanocrystals: Manufacture and characterization. Biomacromolecules 11(3): 674-681.
Pickering, K.L., Sawpan, M.A.,
Jayaraman, J. & Fernyhough, A. 2011. Influence of loading rate, alkali
fibre treatment and crystallinity on fracture toughness of random short hemp
fibre reinforced polylactide bio-composites. Composites Part A: Applied Science and Manufacturing 42(9):
1148-1156.
Prabowo, I., Pratama, J. &
Chalid, M. 2017. The effect of modified ijuk fibers to crystallinity of
polypropylene composite. IOP Conference
Series: Materials Science and Engineering 223: 012020.
Pradeep, S.A., Kharbas, H., Turng,
L.S., Avalos, A., Lawrence, J.G. & Pilla, S. 2017. Investigation of thermal
and thermomechanical properties of biodegradable PLA/PBSA composites processed
via supercritical fluid-assisted foam injection molding. Polymers 9(1): 22.
Sarah, Y., Rahman, W.A.W.A., Majid,
R.A., Yahya, W.J., Adrus, N., Hasannuddin, A.K. & Low, J.H. 2018.
Optimization of pineapple leaf fibre extraction methods and their
biodegradabilities for soil cover application. Journal of Polymers and the Environment 26: 319-329.
Suryanto, H., Marsyahyo, E., Irawan,
Y. & Soenoko, R. 2014. Effect of alkali treatment on crystalline structure
of cellulose fiber from mendong (Fimbristylis
globulosa) straw. Key Engineering Materials 595: 720-724.
WWF Malaysia. 2020. Releases Report Proposing Effective Solution
to Mitigate Plastic Pollution in Malaysia. Accessed November 8, 2021.
https://www.wwf.org.my/?28105/WWF-Releases-Report-Proposing-Effective-Solution-to-Mitigate-Plastic-Pollution-in-Malaysia
Zin, M.H., Abdan, K., Mazlan, N.,
Zainudin, E.S. & Liew, K.E. 2018. The effects of alkali treatment on the
mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion
to epoxy resin. IOP Conference Series:
Materials Science and Engineering 368(1): 012035.
*Corresponding author; email: nmmira@um.edu.my
|