Sains Malaysiana
52(5)(2023):
1545-1556
http://doi.org/10.17576/jsm-2023-5205-16
Gel Mengandungi Nanozarah Kitosan
yang Dimuatkan dengan DsiRNA dan Kurkumin sebagai Pembalut Luka Kencing Manis:
Pelepasan Bahan Aktif dan Kesan Kesitotoksikan
(Gel Containing Chitosan Nanoparticles Loaded with DsiRNA and Curcumin as a Diabetic Wound Dressing: The
Release of Active Ingredients and Cytotoxic Effects)
FATIN HANANI MOHD FADHIL, NG
SHIOW-FERN & HALIZA KATAS*
Centre for Drug Delivery Technology,
Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul
Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia
Received:20 September 2022/Accepted:
14 April 2023
Abstrak
Baru-baru ini, RNA penghalang kecil
substrat-Diser (DsiRNA) telah digabungkan dengan satu agen anti-radang semula
jadi iaitu kurkumin (Cur) dalam bentuk nanozarah dan dimuatkan ke dalam gel
untuk rawatan luka kencing manis. DsiRNA telah digunakan untuk melenyapkan
ekspresi berlebihan gen pembawa prostaglandin (PGT) yang mengganggu respons
pembentukan salur darah dan melambatkan penyembuhan luka. Selain sifat
fizikokimia, keberkesanan dan keselamatan formulasi ini juga bergantung kepada
corak pelepasan bahan aktif. Oleh itu, kajian ini telah menilai corak pelepasan bahan aktif daripada nanozarah
dan gel tersebut serta kesan kesitotoksikannya. Dalam kajian ini, kedua-dua
bahan aktif ini telah dimasukkan ke dalam nanozarah kitosan (CSNPs) menggunakan
kaedah gelasi ion dan kemudiannya dicampur ke dalam pembawa gel Pluronik F-127
(PF-127) pada kepekatan berbeza. CSNPs yang terhasil telah dioptimumkan untuk
memperoleh zarah bersaiz kecil (301.3 ± 57.6 nm) dan cas permukaan yang tinggi
(+23.7 ± 0.7 mV). Kebanyakan zarah adalah berbentuk sfera dengan keberkesanan
pemerangkapan yang tinggi untuk Cur (86.8 ± 4.2%) dan DsiRNA (100.9 ± 52.5%).
Gel yang terhasil pula mempunyai tekstur dan morfologi gel yang baik dan sesuai
untuk aplikasi topikal. Kajian pelepasan dadah selama 24 jam secara in-vitro menunjukkan jumlah kumulatif
pelepasan DsiRNA adalah lebih tinggi berbanding Cur iaitu dalam lingkungan
23.8-35.4 µg/cm2. Kebolehidupan fibroblas yang didedahkan kepada
formulasi ini juga adalah melebihi 80%, menggambarkan sifat tidak toksik CSNPs
terhadap sel. Kesimpulannya, formulasi gel yang mengandungi CSNPSs ini
berpotensi untuk dibangunkan sebagai pembalut luka dan agen penyembuh luka
kencing manis.
Kata kunci: Diabetes; luka kronik;
semi-pepejal; teknologi asid nukleik
Abstract
Recently, Dicer-substrate small interfering RNA
(DsiRNA) has been incorporated into chitosan nanoparticles (CSNPs) in combination
with a natural anti-inflammatory agent called curcumin (Cur) and later the
nanoparticles were loaded into gels for treating diabetic wounds. DsiRNA is used to silence the
overexpression of prostaglandin transporter gene (PGT) which attenuates blood
vessel formation and slows the healing of diabetic wounds. In addition to physicochemical properties, the
effectiveness and safety of these formulations depend on the release of active ingredients.
Therefore, this study evaluated the release pattern of active ingredients from
the nanoparticles and the gels as well as their cytotoxic effects. In this study,
both active ingredients were incorporated into the CSNPs via ionic gelation
method and loaded into different concentrations of Pluronic F-127 (PF-127)
gels. The CSNPs were optimized to
produce small-sized particles (301.3 ± 57.6 nm) and a high surface charge value
(+23.7 ±0.7 mV). Most particles were spherical in shape with high percent of entrapment
efficiency for Cur (86.8 ±4.2%) and DsiRNA (100.9 ±52.5%), respectively. The resulting gels had shown good texture and
morphology that were suitable for topical applications. An in-vitro drug
release study for 24 h showed that the cumulative amount of DsiRNA released was
higher than Cur; in the range of 23.8-35.4 μg/cm2. The viabilty
of fibroblasts exposed to the formulations was more than 80%, showing the
non-toxic property of CSNPs to cells. In
conclusion, gels containing the CSNPSs have shown the potential to be developed
as wound dressings and healing agents for diabetic wounds.
Keywords:
Chronic wound; diabetes; nucleic acid technology; semi-solid
REFERENCES
Agnihotri, S.A., Mallikarjuna, N.N. &
Aminabhavi, T.M. 2004. Recent advances on chitosan-based micro- and
nanoparticles in drug delivery. Journal of Controlled Release 100: 5-28.
Akash, M.S.H. & Rehman, K. 2015. Recent
progress in biomedical applications of pluronic (PF127): Pharmaceutical
perspectives. Journal of Controlled Release 209: 120-138.
Aslanturk, O.S. 2017. In vitro cytotoxicity
and cell viability assays: Principles, advantages, and disadvantages. In Genotoxicity - A Predictable Risk to Our Actual World, edited
by Larramendy, M.L. & Soloneski, S. IntechOpen.
https://www.intechopen.com/books/6310
Baloglu,
E., Karavana, S.Y., Senyigit, Z.A. & Guneri, T. 2011. Rheological and
mechanical properties of poloxamer mixtures as a mucoadhesive gel base. Pharmaceutical
Development and Technology 16(6): 627-636.
Choudary, V. & Shivakumar, H.G. 2018. A review
on curcumin: Wound healing properties and biomarkers of wound healing. International
Research Journal of Pharmacy 9(9): 1-5.
Chin, C.Y., Ng, P.Y. & Ng, S.F. 2018. Moringa oleifera standardised aqueous
leaf extract-loaded hydrocolloid film dressing: in vivo dermal safety
and wound healing evaluation in STZ/HFD diabetic rat model. Drug Delivery
and Translational Research 9(2): 453-468.
Chuah, L.H., Billa, N., Roberts, C.J., Burley, J.C.
& Manickam, S. 2011. Curcumin-containing chitosan nanoparticles as a
potential mucoadhesive delivery system to the colon. Pharmaceutical
Development and Technology 18(3): 591-599.
Debnath, S., Kumar, R.S. & Babu, M.N. 2011.
Ionotropic gelation - A novel method to prepare chitosan nanoparticles. Research
Journal of Pharmacy and Technology 4(4): 492-495.
Escobar-Chávez, J.J., López-Cervantes, M., Naïk,
A., Kalia, Y.N., Quintanar-Guerrero, D. & Ganem-Quintanar, A. 2006.
Applications of thermoreversible pluronic F-127 gels in pharmaceutical
formulations. Journal of Pharmaceutical Sciences 9(3): 339-358.
Gandra, S.C.R., Nguyen, S., Nazzal, S., Alayoubi,
A., Jung, R. & Nesamony, J. 2013. Thermoresponsive fluconazole gels for
topical delivery: Rheological and mechanical properties, in vitro drug
release and anti-fungal efficacy. Pharmaceutical Development and Technology 20(1): 41-49.
Garg, S., Huifu, H., Kaul,
S.C. & Wadhwa, R. 2018. Integration of conventional cell viability assays
for reliable and reproducible read-outs: Experimental evidence. BMC Research
Notes 11: 403.
Gilbert, J.C., Hadgraft, J., Bye, A. & Brookes,
L.G. 1986. Drug release from pluronic F-127 gels. International Journal of
Pharmaceutics 32: 223-228.
Gratieri, T., Gelfuso, G.M., Rocha, E.M., Sarmento,
V.H., Freitas, O.D. & Lopez, R.F.V. 2010. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. European
Journal of Pharmaceutics and Biopharmaceutics 75: 186-193.
Huang, X. & Brazel, C.S. 2001. On the
importance and mechanisms of burst release in matrix-controlled drug delivery
systems. Journal of Controlled Release 73: 121-136.
Johnson, N.R. & Wang, Y. 2015. Drug delivery
systems for wound healing. Current Pharmaceutical Biotechnology 16(7):
621-629.
Kafshgari, M.H., Khorram, M., Khdadoost, M. &
Khavari, S. 2011. Reinforcement of chitosan nanoparticles obtained by an ionic
cross-linking process. Iranian Polymer Journal 20(5): 445-456.
Katas, H., Chai, Y.W., Siddique, M.I., Hussain, Z.
& Fadhil, F.H.M. 2016. Thermoresponsive curcumin/DsiRNA nanoparticle gels
for the treatment of diabetic wounds: Synthesis and drug release. Therapeutic
Delivery 3: 137-150.
Kaur, J., Kaur, J., Jaiswal, S. & Gupta, G.D.
2016. Recent advances in topical drug delivery system. Indo American Journal
of Pharmaceutical Research 6(7): 6353-6369.
Menon, V.P. & Sudheer, A.R. 2007. Antioxidant
and anti-inflammatory properties of curcumin. Advances in Experimental Medicine
and Biology 595: 105-125.
Miyazaki, S., Takeuchi, S., Yokouchi, C. &
Takada, M. 1984. Pluronic F-127 gels as a vehicle for topical administration of
anticancer agents. Chemical and Pharmaceutical Bulletin 32(10):
4205-4208.
Mofazzal, J.M.A., Al-Musawi, S., Pirestani, M.,
Ramandi, M.F., Ahmadi, K., Rajayi, H., Mohammad Hassan, Z., Kamali, M. &
Mirnejad, R. 2014. Curcumin-loaded chitosan tripolyphosphate nanoparticles as a
safe, natural and effective antibiotic inhibits the infection of Staphylococcus
aureus and Pseudomonas aeruginosa in vivo. Iranian Journal of
Biotechnology 12(3): 1-8.
Mohamad, N., Mohd Amin, M.C.I., Pandey, M., Ahmad,
N. & Rajab, N.F. 2014. Bacterial cellulose/acrylic acid hydrogel
synthesized via electronbeam irradiation: Accelerated burn wound healing in an
animal model. Carbohydrate Polymers 114: 312-320.
Nesalin, J.A.J., Pavithra, T., Pallavi, A., Umesh,
B.L. & Mani, T.T. 2017. Formulation and evaluation of curcumin loaded
topical gel. International Journal of Pharmacy and Pharmaceutical 1(2):
79-84.
Nor Azlan, A.Y.H., Katas, H., Zin, N.M. &
Fauzi, M.B. 2021. Dual action gels containing DsiRNA loaded gold nanoparticles:
Augmenting diabetic wound healing by promoting angiogenesis and inhibiting
infection. European Journal of
Pharmaceutics and Biopharmaceutics 619: 78-90.
Raja, M.A.G., Katas, H. & Thum, J.W. 2015.
Stability, intracellular delivery, and release of sirna from chitosan
nanoparticles using different cross-linkers. PLoS ONE 10(6): 1-19.
Raja, M.A.G., Katas, H., Hamid, Z.A. & Razali,
N.A. 2013. Physicochemical properties and in vitro cytotoxicity studies
of chitosan as a potential carrier for dicer-substrate siRNA. Journal of
Nanomaterials 2013: Article ID. 653892.
Tanwar, Y.S. & Jain, A.K. 2012. Formulation and
evaluation of topical diclofenac sodium gel using different gelling agent. Asian
Journal of Pharmaceutical Research & Health Care 4(1): 1-6.
Varuna, K.J.B. & Madhusudhan, B. 2015.
Synthesis, characterization and hemocompatibility evaluation of curcumin
encapsulated chitosan nanoparticles for oral delivery. International Journal
of Advanced Research 3(4): 604-611.
Wang, Z. 2010. Effects of the process parameters on
the initial burst release of poly(lactide-co-glycolide) microspheres containing
bovine serum albumin by the double-emulsion solvent evaporation/extraction
method. Journal of Applied Polymer Science 115: 2599-2608.
Yeo, Y.
& Park, K. 2004. Control of encapsulation efficiency and initial burst in
polymeric microparticle systems. Archives of Pharmacal Research 27(1):
1-12.
*Corresponding
author; email: haliza.katas@ukm.edu.my
|