Sains Malaysiana 52(5)(2023): 1545-1556

http://doi.org/10.17576/jsm-2023-5205-16

 

Gel Mengandungi Nanozarah Kitosan yang Dimuatkan dengan DsiRNA dan Kurkumin sebagai Pembalut Luka Kencing Manis: Pelepasan Bahan Aktif dan Kesan Kesitotoksikan

(Gel Containing Chitosan Nanoparticles Loaded with DsiRNA and Curcumin as a Diabetic Wound Dressing: The Release of Active Ingredients and Cytotoxic Effects)

 

 FATIN HANANI MOHD FADHIL, NG SHIOW-FERN & HALIZA KATAS*

 

Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

Received:20 September 2022/Accepted: 14 April 2023

 

Abstrak

Baru-baru ini, RNA penghalang kecil substrat-Diser (DsiRNA) telah digabungkan dengan satu agen anti-radang semula jadi iaitu kurkumin (Cur) dalam bentuk nanozarah dan dimuatkan ke dalam gel untuk rawatan luka kencing manis. DsiRNA telah digunakan untuk melenyapkan ekspresi berlebihan gen pembawa prostaglandin (PGT) yang mengganggu respons pembentukan salur darah dan melambatkan penyembuhan luka. Selain sifat fizikokimia, keberkesanan dan keselamatan formulasi ini juga bergantung kepada corak pelepasan bahan aktif. Oleh itu,  kajian ini telah menilai corak pelepasan bahan aktif daripada nanozarah dan gel tersebut serta kesan kesitotoksikannya. Dalam kajian ini, kedua-dua bahan aktif ini telah dimasukkan ke dalam nanozarah kitosan (CSNPs) menggunakan kaedah gelasi ion dan kemudiannya dicampur ke dalam pembawa gel Pluronik F-127 (PF-127) pada kepekatan berbeza. CSNPs yang terhasil telah dioptimumkan untuk memperoleh zarah bersaiz kecil (301.3 ± 57.6 nm) dan cas permukaan yang tinggi (+23.7 ± 0.7 mV). Kebanyakan zarah adalah berbentuk sfera dengan keberkesanan pemerangkapan yang tinggi untuk Cur (86.8 ± 4.2%) dan DsiRNA (100.9 ± 52.5%). Gel yang terhasil pula mempunyai tekstur dan morfologi gel yang baik dan sesuai untuk aplikasi topikal. Kajian pelepasan dadah selama 24 jam secara in-vitro menunjukkan jumlah kumulatif pelepasan DsiRNA adalah lebih tinggi berbanding Cur iaitu dalam lingkungan 23.8-35.4 µg/cm2. Kebolehidupan fibroblas yang didedahkan kepada formulasi ini juga adalah melebihi 80%, menggambarkan sifat tidak toksik CSNPs terhadap sel. Kesimpulannya, formulasi gel yang mengandungi CSNPSs ini berpotensi untuk dibangunkan sebagai pembalut luka dan agen penyembuh luka kencing manis.

 

Kata kunci: Diabetes; luka kronik; semi-pepejal; teknologi asid nukleik

 

Abstract

Recently, Dicer-substrate small interfering RNA (DsiRNA) has been incorporated into chitosan nanoparticles (CSNPs) in combination with a natural anti-inflammatory agent called curcumin (Cur) and later the nanoparticles were loaded into gels for treating diabetic wounds. DsiRNA is used to silence the overexpression of prostaglandin transporter gene (PGT) which attenuates blood vessel formation and slows the healing of diabetic wounds. In addition to physicochemical properties, the effectiveness and safety of these formulations depend on the release of active ingredients. Therefore, this study evaluated the release pattern of active ingredients from the nanoparticles and the gels as well as their cytotoxic effects. In this study, both active ingredients were incorporated into the CSNPs via ionic gelation method and loaded into different concentrations of Pluronic F-127 (PF-127) gels. The CSNPs were optimized to produce small-sized particles (301.3 ± 57.6 nm) and a high surface charge value (+23.7 ±0.7 mV). Most particles were spherical in shape with high percent of entrapment efficiency for Cur (86.8 ±4.2%) and DsiRNA (100.9 ±52.5%), respectively. The resulting gels had shown good texture and morphology that were suitable for topical applications. An in-vitro drug release study for 24 h showed that the cumulative amount of DsiRNA released was higher than Cur; in the range of 23.8-35.4 μg/cm2. The viabilty of fibroblasts exposed to the formulations was more than 80%, showing the non-toxic property of CSNPs to cells. In conclusion, gels containing the CSNPSs have shown the potential to be developed as wound dressings and healing agents for diabetic wounds.

 

Keywords: Chronic wound; diabetes; nucleic acid technology; semi-solid

 

REFERENCES

Agnihotri, S.A., Mallikarjuna, N.N. & Aminabhavi, T.M. 2004. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release 100: 5-28.

Akash, M.S.H. & Rehman, K. 2015. Recent progress in biomedical applications of pluronic (PF127): Pharmaceutical perspectives. Journal of Controlled Release 209: 120-138.

Aslanturk, O.S. 2017. In vitro cytotoxicity and cell viability assays: Principles, advantages, and disadvantages. In Genotoxicity - A Predictable Risk to Our Actual World, edited by Larramendy, M.L. & Soloneski, S. IntechOpen. https://www.intechopen.com/books/6310

Baloglu, E., Karavana, S.Y., Senyigit, Z.A. & Guneri, T. 2011. Rheological and mechanical properties of poloxamer mixtures as a mucoadhesive gel base. Pharmaceutical Development and Technology 16(6): 627-636.

Choudary, V. & Shivakumar, H.G. 2018. A review on curcumin: Wound healing properties and biomarkers of wound healing. International Research Journal of Pharmacy 9(9): 1-5.

Chin, C.Y., Ng, P.Y. & Ng, S.F. 2018. Moringa oleifera standardised aqueous leaf extract-loaded hydrocolloid film dressing: in vivo dermal safety and wound healing evaluation in STZ/HFD diabetic rat model. Drug Delivery and Translational Research 9(2): 453-468.

Chuah, L.H., Billa, N., Roberts, C.J., Burley, J.C. & Manickam, S. 2011. Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharmaceutical Development and Technology 18(3): 591-599.

Debnath, S., Kumar, R.S. & Babu, M.N. 2011. Ionotropic gelation - A novel method to prepare chitosan nanoparticles. Research Journal of Pharmacy and Technology 4(4): 492-495.

Escobar-Chávez, J.J., López-Cervantes, M., Naïk, A., Kalia, Y.N., Quintanar-Guerrero, D. & Ganem-Quintanar, A. 2006. Applications of thermoreversible pluronic F-127 gels in pharmaceutical formulations. Journal of Pharmaceutical Sciences 9(3): 339-358.

Gandra, S.C.R., Nguyen, S., Nazzal, S., Alayoubi, A., Jung, R. & Nesamony, J. 2013. Thermoresponsive fluconazole gels for topical delivery: Rheological and mechanical properties, in vitro drug release and anti-fungal efficacy. Pharmaceutical Development and Technology 20(1): 41-49.

Garg, S., Huifu, H., Kaul, S.C. & Wadhwa, R. 2018. Integration of conventional cell viability assays for reliable and reproducible read-outs: Experimental evidence. BMC Research Notes 11: 403.

Gilbert, J.C., Hadgraft, J., Bye, A. & Brookes, L.G. 1986. Drug release from pluronic F-127 gels. International Journal of Pharmaceutics 32: 223-228.

Gratieri, T., Gelfuso, G.M., Rocha, E.M., Sarmento, V.H., Freitas, O.D. & Lopez, R.F.V. 2010. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. European Journal of Pharmaceutics and Biopharmaceutics 75: 186-193.

Huang, X. & Brazel, C.S. 2001. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release 73: 121-136.

Johnson, N.R. & Wang, Y. 2015. Drug delivery systems for wound healing. Current Pharmaceutical Biotechnology 16(7): 621-629.

Kafshgari, M.H., Khorram, M., Khdadoost, M. & Khavari, S. 2011. Reinforcement of chitosan nanoparticles obtained by an ionic cross-linking process. Iranian Polymer Journal 20(5): 445-456.

Katas, H., Chai, Y.W., Siddique, M.I., Hussain, Z. & Fadhil, F.H.M. 2016. Thermoresponsive curcumin/DsiRNA nanoparticle gels for the treatment of diabetic wounds: Synthesis and drug release. Therapeutic Delivery 3: 137-150.

Kaur, J., Kaur, J., Jaiswal, S. & Gupta, G.D. 2016. Recent advances in topical drug delivery system. Indo American Journal of Pharmaceutical Research 6(7): 6353-6369.

Menon, V.P. & Sudheer, A.R. 2007. Antioxidant and anti-inflammatory properties of curcumin. Advances in Experimental Medicine and Biology 595: 105-125.

Miyazaki, S., Takeuchi, S., Yokouchi, C. & Takada, M. 1984. Pluronic F-127 gels as a vehicle for topical administration of anticancer agents. Chemical and Pharmaceutical Bulletin 32(10): 4205-4208.

Mofazzal, J.M.A., Al-Musawi, S., Pirestani, M., Ramandi, M.F., Ahmadi, K., Rajayi, H., Mohammad Hassan, Z., Kamali, M. & Mirnejad, R. 2014. Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iranian Journal of Biotechnology 12(3): 1-8.

Mohamad, N., Mohd Amin, M.C.I., Pandey, M., Ahmad, N. & Rajab, N.F. 2014. Bacterial cellulose/acrylic acid hydrogel synthesized via electronbeam irradiation: Accelerated burn wound healing in an animal model. Carbohydrate Polymers 114: 312-320.

Nesalin, J.A.J., Pavithra, T., Pallavi, A., Umesh, B.L. & Mani, T.T. 2017. Formulation and evaluation of curcumin loaded topical gel. International Journal of Pharmacy and Pharmaceutical 1(2): 79-84.

Nor Azlan, A.Y.H., Katas, H., Zin, N.M. & Fauzi, M.B. 2021. Dual action gels containing DsiRNA loaded gold nanoparticles: Augmenting diabetic wound healing by promoting angiogenesis and inhibiting infection. European Journal of Pharmaceutics and Biopharmaceutics 619: 78-90.

Raja, M.A.G., Katas, H. & Thum, J.W. 2015. Stability, intracellular delivery, and release of sirna from chitosan nanoparticles using different cross-linkers. PLoS ONE 10(6): 1-19.

Raja, M.A.G., Katas, H., Hamid, Z.A. & Razali, N.A. 2013. Physicochemical properties and in vitro cytotoxicity studies of chitosan as a potential carrier for dicer-substrate siRNA. Journal of Nanomaterials 2013: Article ID. 653892.

Tanwar, Y.S. & Jain, A.K. 2012. Formulation and evaluation of topical diclofenac sodium gel using different gelling agent. Asian Journal of Pharmaceutical Research & Health Care 4(1): 1-6.

Varuna, K.J.B. & Madhusudhan, B. 2015. Synthesis, characterization and hemocompatibility evaluation of curcumin encapsulated chitosan nanoparticles for oral delivery. International Journal of Advanced Research 3(4): 604-611.

Wang, Z. 2010. Effects of the process parameters on the initial burst release of poly(lactide-co-glycolide) microspheres containing bovine serum albumin by the double-emulsion solvent evaporation/extraction method. Journal of Applied Polymer Science 115: 2599-2608.

 Yeo, Y. & Park, K. 2004. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Archives of Pharmacal Research 27(1): 1-12.

 

*Corresponding author; email: haliza.katas@ukm.edu.my

 

 

 

 

 

 

previous