Sains Malaysiana 45(11)(2016): 1697–1705
Studies of Ion Transport and Electrochemical
Properties of Plasticized Composite
Polymer Electrolytes
(Kajian Pengangkutan Ion dan Sifat Elektrokimia Komposit Pemplastik Polimer Elektrolit)
D. HAMBALI1,2, Z. ZAINUDDIN1,2,
I.
SUPA’AT3
& Z. OSMAN1*
1Centre for Ionics,
University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Department of Physics,
University of Malaya, 50603 Kuala Lumpur, Federal Territory
Malaysia
3Centre for Foundation
Studies in Sciences, University of Malaya, 50603 Kuala Lumpur,
Federal Territory,
Malaysia
Diserahkan: 7 November 2015/Diterima:
29 Mac 2016
ABSTRACT
The composite polymer electrolytes
(CPEs) composed of polyacrylonitrile
(PAN)
as host polymer, lithium tetraflouroborate
(LiBF4)
as dopant salt, dissoÅlved in the mixture
of ethylene carbonate (EC) and dimethyl phthalate (DMP)
as plasticizing solvent, with the addition
of silica (SiO2) as inorganic filler were prepared by the solution
casting technique. The CPE films were prepared by varying
the concentrations of SiO2 from
1 to 5 wt. %. The CPE film containing 3 wt. % of SiO2 exhibits
the highest ionic conductivity of 1.36 × 10-2 S
cm-1 at room temperature while for
temperature dependence studies, the plot obtained obeyed Arrhenius
rule and the calculated activation energy was 0.11 eV. The ionic
conductivity of the CPEs
was found to depend on the concentration of ion pairs of dopant
salt as showed by FTIR spectra. The calculated value of lithium ions transport
number, tLi+ for
the highest conducting CPE film was 0.15. This result indicates
that anionic species are the main contributor to the total conductivity
of the CPE. The CPE film
has an electrochemical stability higher than the non-filler film.
Keywords: Composite polymer
electrolytes; conductivity; FTIR; lithium tetraflouroborate; PAN
ABSTRAK
Komposit polimer elektrolit (CPEs)
yang terdiri daripada
poliakrilonitril (PAN) sebagai
hos polimer, litium
tetrafloroborat (LiBF4) sebagai
garam pendop
telah larutkan di dalam campuran etilina karbonat (EC)
dan dimetil ftalat
(DMP)
sebagai pelarut
pemplastik, dengan silika (SiO2) sebagai
filer tak organik,
telah disediakan melalui kaedah tuangan larutan. Filem CPE telah disediakan dengan pelbagai kandungan SiO2 dari 1 hingga 5 % bt. Filem CPE yang
mengandungi 3 % bt.
SiO2 memberikan nilai kekonduksian pada suhu yang bilik tertinggi iaitu 1.36 × 10-2 S
cm-1. Kekonduksian bagi CPEs
didapati bergantung kepada kandungan pasangan ion daripada garam pendop seperti
yang ditunjukkan oleh
spektra FTIR. Nilai bagi nombor pengangkutan
ion litium, tLi+ untuk CPE filem dengan kekonduksian tertinggi adalah 0.15. Keputusan ini menunjukkan spesies anion adalah penyumbang utama kepada kekonduksian CPE.
Filem
CPE
mempunyai kestabilan elektrokimia lebih tinggi daripada filem tanpa filer.
Kata kunci: FTIR;
kekonduksian; komposit
polimer elektrolit; litium tetrafloroborat; PAN
RUJUKAN
Abraham, K.M., Jiang, Z. & Carroll, B. 1997. Highly conductive PEO-like polymer electrolytes. Chemistry
of Materials 9(9): 1978-1988.
Adnan, S.B.R.S. & Mohamed, N.S. 2014. Properties of novel Li4-3xCrxSiO4 ceramic electrolyte.
Ceramics International 40(3): 5033-5038.
Agrawat, R.C.
& Mahipal, T.K. 2011. Study
of electrical and electrochemical behaviour
on hot-press synthesized nano-composite
polymer electrolyte (NCPE) membranes: [(70PEO: 30 KNO3)
+ X SiO2. International Journal of Electrochemical
Science 6: 867-881.
Ahmad, A., Rahman, M.Y.A. & Su’ait,
M.S. 2008. Preparation and characterization of PVC-LiClO4
based composite polymer electrolyte. Physica
B: Condensed Matter 403(21- 22): 4128-4131.
Armand, M.B., Chabagno, J.M. & Duclot, M. 1979. Fast Ion Transport in Solids,
edited by Vahisha, P., Mundy, J.N. &
Shenoy, G.K. North Holland, New York: Elsevier.
Chen-Yang, Y.W., Chen, Y.T., Chen, H.C., Lin, W.T. & Tsai, C.H.
2009. Effect of the addition of hydrophobic clay on
the electrochemical property of polyacrylonitrile/LiClO4
polymer electrolytes for lithium battery. Polymer 50(13):
2856-2862.
Choe, H.S., Carroll, B.G.,
Pasquariello, D.M. & Abraham, K.M.
1997. Characterization
of some polyacrylonitrile-based electrolytes
9(1): 367-379.
Chong, W.G. & Osman, Z. 2014. The effect of carbonate-phthalate plasticizers on structural, morphological
and electrical properties of polyacrylonitrile-based
solid polymer electrolytes. Journal of Polymer Research
21(3): 381.
Evans, J., Vincent, C.A. & Bruce, P.G. 1987. Electrochemical
measurement of transference numbers in polymer electrolytes. Polymer
28(13): 2324-2328.
Fenton, D.E., Parker, J.M. & Wright, P.V. 1973. Complexes of alkali
metal ions with poly(ethylene oxide).
Polymer 14(11): 589.
Gadjourova, Z., Andreev, Y.G., Tunstall, D.P. & Bruce, P.G. 2001.
Ionic conductivity in crystalline polymer electrolytes.
Letters to Nature 412:
520-523.
Hema,
M., Selvasekerapandian, S., Sakunthala,
A., Arunkumar, D. & Nithya,
H. 2008.
Structural, vibrational and electrical characterization
of PVA - NH 4 Br polymer electrolyte system. Physica
B: Condensed Matter 403(17): 2740-2747.
Imperiyka,
M., Ahmad, A., Hanifah, S.A., Mohamed,
N.S. & Rahman, M.Y.A. 2014. Investigation of plasticized UV-curable glycidyl methacrylate based solid polymer electrolyte for
photoelectrochemical cell (PEC) application. International
Journal of Hydrogen Energy 39(6): 3018-3024.
Md
Isa, K.B., Othman, L. & Osman, Z. 2011. Comparative studies on plasticized and unplasticized
polyacrylonitrile (PAN) polymer electrolytes
containing lithium and sodium salts. Sains
Malaysiana 40(7): 695-700.
Jayathilaka,
P.A.R.D., Dissanayake, M.A.K.L., Albinssom,
I. & Mellandar, B.E. 2002. Effect of nano-porous Al2O3 on thermal, dielectric
and transport properties of the (PEO)9LiTFSI
polymer electrolyte system. Electrochimica
Acta 47: 3257-3628.
Kumar,
B. 2004.
From colloidal to composite electrolytes: Properties, peculiarities,
and possibilities. Journal of Power Sources 135(1-2): 215-231.
Kumar,
D. & Hashmi, S.A. 2010. Ion transport and ion-filler-polymer interaction
in poly(methyl Methacrylate)-based, sodium
ion conducting, gel polymer electrolytes dispersed with silica
nanoparticles. Journal of Power Sources 195(15): 5101-5108.
Lee,
K.H., Lee, Y.G., Park, J.K. & Seung,
D.Y. 2000. Effect of silica
on the electrochemical characteristics of the plasticized polymer
electrolytes based on the P(AN-Co-MMA)
copolymer. Solid State Ionics 133(3-4): 257-263.
Souquet,
J.L., Levy, M. & Duclot, M. 1994. A single microscopic approach for ionic transport in glassy and polymer
electrolytes. Solid State Ionics 70-71(1): 337-345.
Manuel
Stephan, A. & Nahm, K.S. 2006. Review on composite
polymer electrolytes for lithium batteries. Polymer 47(16):
5952-5964.
Osman,
Z., Md Isa, K.B., Ahmad, A. & Othman, L. 2010. A comparative
study of lithium and sodium salts in PAN-based ion conducting
polymer electrolytes. Ionics 16(5): 431-435.
Othman,
L., Md Isa, K.B., Osman, Z. & Yahya,
R. 2013. Ionic conductivity,
morphology and transport number of lithium ions in PMMA based
gel polymer electrolytes. Defect and Diffusion Forum 334-335:
137-142.
Othman,
L., Chew, K.W. & Osman, Z. 2007. Impedance spectroscopy studies of poly(methyl methacrylate)-lithium salts polymer electrolyte
systems. Ionics 13: 337-342.
Pandey,
G.P. & Hashmi, S.A. 2009. Experimental investigations of an ionic-liquid-based,
magnesium ion conducting, polymer gel electrolyte. Journal
of Power Sources 187(2): 627-634.
Rajendran, S., Babu, R.S. & Sivakumar, P. 2008.
Investigations on PVC/PAN composite polymer
electrolytes. Journal of Membrane Science 315(1-2):
67-73.
Rajendran,
S., Sivakumar, M. & Subadevi,
R. 2004.
Investigations on the effect of various plasticizers in PVA -
PMMA solid polymer blend electrolytes. Materials Letters 58:
641-649.
Rajendran,
S., Mahendran, O. & Kannan. R. 2002a. Ionic
conductivity studies in composite solid polymer electrolytes based
on methylmethacrylate. Journal of Physics and Chemistry of
Solids 63(2): 303-307.
Rajendran,
S., Mahendran, O. & Mahalingam,
T. 2002b. Thermal and ionic
conductivity studies of plasticized PMMA/PVdF
blend polymer electrolytes. European Polymer Journal 38(1):
49-55.
Ramesh,
S. & Lu, S.C. 2008. Effect of nanosized silica
in poly(methyl methacrylate)-lithium
bis(trifluoromethanesulfonyl)imide
based polymer electrolytes. Journal of Power Sources 185(2):
1439-1443.
Scrosati,
B. & Garche, J. 2010. Lithium batteries:
Status, prospects and future. Journal of Power Sources 195(9):
2419-2430.
Shin,
J.H. & Passerini, S. 2004. Effect of fillers
on the electrochemical and interfacial properties of PEO-LiN(SO2CF2CF3)2
polymer electrolytes. Electrochimica
Acta 49(9-10): 1605-1612.
Suthanthiraraj,
S.A., Kumar, R. & Paul, B.J. 2009. FT-IR spectroscopic investigation
of ionic interactions in PPG 4000: AgCF3SO3
polymer electrolyte. Spectrochimica Acta. Part A, Molecular
and Biomolecular Spectroscopy 71(5): 2012-2015.
Watanabe,
M., Kanba, M., Nagaoka, K. & Shinohara,
I. 1983. Ionic conductivity
of hybrid films composed of polyacrylonitrile,
ethylene carbonate, and LiClO4. Journal of Polymer
Science Part B: Polymer Physics Edition 21: 939-948.
Yang,
C.M., Kim, H.S., Na, B.K., Kum, K.S. & Cho, B.W. 2006. Gel-type polymer electrolytes with different types of ceramic fillers
and lithium salts for lithium-ion polymer batteries. Journal
of Power Sources 156(2): 574-580.
Yoon,
H.K., Chung, W.S. & Jo, N.J. 2004. Study on ionic transport mechanism
and interactions between salt and polymer chain in PAN based solid
polymer electrolytes containing LiCF3SO3. Electrochimica
Acta 50: 289-293.
Zainol,
N.H., Samin, S.M., Othman, L., Md Isa,
K.B., Chong, W.G. & Osman, Z. 2013. Magnesium ion-based gel polymer electrolytes:
Ionic conduction and infrared spectroscopy studies. International Journal of Electrochemical Science
8: 3602-3614.
*Pengarang untuk surat-menyurat; email: zurinaosman@um.edu.my