Sains Malaysiana 45(11)(2016): 1707–1714
Bulk CO2/CH4 Separation
for Offshore Operating Conditions using Membrane Process
(Pemisahan
Pukal CO2/CH4 untuk Keadaan Operasi
Luar Pesisir
menggunakan Proses Membran)
NORWAHYU JUSOH,
KOK
KEONG
LAU*,
YIN
FONG
YEONG
& AZMI M. SHARIFF
Chemical Engineering
Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar,
Perak Darul Ridzuan, Malaysia
Diserahkan: 6 April 2015/Diterima: 30 Mac 2016
ABSTRACT
The increasing demands of natural
gas pushes energy industries to explore the reservoirs contain
high CO2 concentration
and impurities including heavy hydrocarbons. High efficiency of
using membrane technology in CO2-natural gas separation
has extended its potential application to offshore environment.
Due to the limited studies related with the separation of CO2 under
offshore conditions, the present work has investigated the separation
performance of a commercial membrane in removing bulk CO2 from
methane at elevated pressure condition. A wide range of offshore
operating conditions including, pressure from 10 to 50 bar, CO2 concentration
from 25 to 70% and temperature of 30oC, 40oC
and 50oC were studied. High relative CO2 permeance and relative CO2/CH4 selectivity
were observed when the pressure and the CO2 concentration
increased. This work, therefore substantial is to bridge the gap
and facilitates the application of membrane technology for offshore
operating conditions.
Keywords: Bulk CO2;
membrane process; natural gas separation
ABSTRAK
Peningkatan permintaan terhadap
gas asli telah
mendorong industri tenaga untuk meneroka
takungan yang mengandungi
kepekatan CO2 dan bendasing yang tinggi termasuk hidrokarbon berat. Kecekapan tinggi dalam penggunaan
teknologi membran
dalam pemisahan CO2-gas
asli telah
meningkatkan potensi aplikasi kepada persekitaran luar pesisir. Disebabkan kajian yang berkaitan
dengan pemisahan
CO2 di
luar pesisir
yang terhad, kajian terkini telah mengkaji
prestasi pemisahan
membran komersial dalam mengeluarkan CO2 pukal daripada metana pada keadaan
tekanan yang tinggi.
Pelbagai keadaan
operasi luar pesisir
termasuk tekanan
dari 10 kepada 50 bar, kepekatan CO2 dari 25% ke 70% dan suhu 30°C, 40°C dan 50°C telah dikaji. Ketelapan relatif CO2 dan kepemilihan CO2/CH4 relatif yang tinggi telah diperhatikan apabila tekanan dan kepekatan CO2 meningkat. Oleh itu, penyelidikan
ini penting
untuk merapatkan jurang dan memudahkan
penggunaan teknologi
membran bagi keadaan
operasi luar
pesisir.
Kata kunci: CO2 pukal; pemisahan gas asli; proses membrane
RUJUKAN
Ahmad, A.L. & Lau, K.K. 2007. Modeling,
simulation, and experimental validation for aqueous solutions
flowing in nanofiltration membrane channel.
Ind. Eng. Chem. Res. 46: 1316-1325.
Ahmad, F., Lau, K.K., Shariff, A.M. &
Murshid, G. 2012. Process simulation and optimal design of membrane separation system
for CO2 capture from natural gas. Comput. Chem.
Eng. 36: 119-128.
Al-Juaied, M. & Koros,
W.J. 2006. Performance of natural gas membranes in the presence
of heavy hydrocarbons. J. Membrane Sci. 274: 227-243.
Ambrose, D., Ewing, M.B. & McGlashan,
M.L 2011. Critical constants and second virial coefficient
of gases. Kaye & Laby:
Tables of Physical & Chemical Constants. Chapter 3, Section
3.5.
Baker,
R.W. & Lokhandwala,
K. 2008. Natural gas processing with membane:
Overview. Ind. Eng. Chem. Res. 4: 2109- 2021.
Baker, R.W., Wijmans, J.G. & Kaschemekat, J.H. 1998. The design of membrane vapor-gas separation systems. J.
Membrane Sci. 151: 55-62.
Chen, G.Q. 2012. Water vapor permeation through
glassy polyimide membranes and its impact upon carbon dioxide
capture operations. PhD Thesis. The University
of Melbourne, Melbourne, Australia (Unpublished).
Costello, L.M. & Koros, W.J. 1992. Temperature
dependence of gas sorption and transport properties in polymers:
Measurement and application. Ind. Eng. Chem. Res. 31: 2708-2714.
Dhingra, S.S. 1997. Mixed gas
transport study through polymeric membranes: A novel technique.
PhD Thesis. Virginia Polytechnic Institute and State University,
Blacksburg, Virginia (Unpublished).
Duda, J.L., Hadj Romdhane, I. & Danner,
R.P. 1994. Diffusion in glassy polymers relaxation and antiplasticization. J. Non- Cryst.
Solids 172: 715-720.
Chatterjee, G., Houde, A.A. & Stern,
S.A. 1997. Poly(ether urethane) and poly(ether urethane
urea) membranes with high H2S/CH4 selectivity. J.
Membrane Sci. 135: 99-106.
Geankoplis,
C.J. 2003. Transport Processes and Separation Process Principles:
Includes Unit Operations. 4th ed.
New Jersey: Prentice Hall.
Hanif,
A., Suhartanto, T. & Green, M.L.H.
2002. Possible utilisation of CO2 on
Natuna’s gas field using dry reforming
of methane to syngas (CO & H2). SPE
Asia Pacific Oil and Gas Conference and Exhibition.
Melbourne, Australia.
Hasan,
R., Scholes, C.A., Stevens, G.W. & Kentish, S.E. 2009. Effect of hydrocarbons on the separation of carbon dioxide from methane
through a polyimide gas separation membrane. Ind. Eng.
Chem. Res. 48: 5415-5419.
Hillock,
A.M.W., Miller, S.J. & Koros, W.J.
2008. Crosslinked mixed
matrix membranes for the purification of natural gas: Effects
of sieve surface modification. J. Membrane Sci. 314: 193-199.
Husain,
S. & Koros, W.J. 2007. Mixed matrix hollow
fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. J. Membrane
Sci. 288: 195-207.
Khan,
A.L., Li, X. & Vankelecom, I.F.J.
2011. Mixed-gas CO2/CH4 and CO2/N2
separation with sulfonated PEEK membranes. J. Membrane
Sci. 372: 87-96.
Khulbe,
K.C., Matsuura, T., Lamarche, G. &
Kim, H.J. 1997.
The morphology characterisation
and performance of dense PPO membranes for gas separation.
J. Membrane Sci. 135: 211-223.
Koros,
W.J., Chern, R.T., Stannett,
V. & Hopfenberg, H.B. 1981. A model for permeation of mixed gases and vapors in glassy polymers.
J. Polym. Sci. Polym. Phys. 19: 1513-1530.
Lee,
A.L., Feldkirchner, H.L., Stern, S.A.,
Houde, A.Y., Gomez, J.P. & Meyer, H.S. 1994. Field tests of
membrane modules for the separation of carbon dioxide from low
quality natural gas. Gas Sep. Purif.
9: 35-43.
Lee, J.S., Madden,
W. & Koros, W.J. 2010. Antiplasticization and plasticization of Matrimid® asymmetric
hollow fiber membranes - Part A. Experimental. J. Membrane
Sci. 350: 232-241.
Liu, L. 2008. Gas
separation by poly(ether block amide)
membranes. PhD Thesis. University of Waterloo, Ontario, Canada. (Unpublised).
Liu,
Y., Chung, T.S., Wang, R., Li, D.F. & Chng,
M.L. 2003.
Chemical cross-linking modification of polyimide/poly(ether
sulfone) dual-layer hollow-fiber membranes for gas separation.
Ind. Eng. Chem. Res. 42: 1190-1195.
Madden, W.C. 2005.
The performance of hollow fiber gas separation
membranes in the presence of an aggressive feed stream.
PhD Thesis. Georgia Institute of Technology
Atlanta, Georgia (Unpublised).
Maeda,
Y. & Paul, D.R. 1987. Effect of antiplasticization on gas sorption and transport. III.
Free volume interpretation. J. Polym.
Sci. Polym. Phys. 25: 1005-1016.
Mohammadi,
T., Moghadam, M.T., Saeidi,
M. & Mahdyarfar, M. 2008. Acid gas permeation
behavior through poly(ester urethane
urea) membrane. Ind. Eng. Chem. Res. 47:
7361- 7367.
Mohammad
Hosein, S., Amin, G. & Mohammad,
Mehdi, M.R. 2009.
Optimization of membrane based CO2 removal from natural
gas using simple models considering both pressure and temperature
effect. International Journal of Greenhouse Gas Control 3:
3-10.
O’Brien,
K.C., Koros, W.J. & Barbari,
T.A. 1986.
A new technique for the measurement of multicomponent
gas transport through polymeric films. J. Membrane Sci.
29: 229-238.
Schell,
W.J. & Houston, C.D. 1983. Membrane gas separations
for chemical process and energy application. In Indusrial Gas Separation, Vol. 223, edited by
Whyte, Jr. T.E., Yon, C.M. & Wagener, E.H. New York: American
Chemical Society. pp. 125-143.
Simons, K. 2010.
Membrane technologies for CO2 Capture.
PhD Thesis. University of Twente,
Netherlands (Unpublished).
Tin,
P.S. 2005.
Membrane materials and fabrications for gas
separation. PhD Thesis. National
University of Singapore. Singapore (Unpublished).
Vaughan,
G.L. & Carrington, C.G. 1998. Psychometric properties
of a moist carbon dioxide atmosphere. Int. J. Food Prop.
1: 77-87.
Weiss, R.F. 1974.
Carbon dioxide in water and seawater: the solubility of a non-ideal
gas. Mar. Chem. 2: 203-215.
Wessling,
M., Schoeman, S., Boomgaard,
T. & Smolders, C.A. 1991. Plasticization of gas
separation membranes. Gas Sep. Purif.
5: 222-228.
Wiryotmojo,
A.S., Mukhtar, H. & Man, Z. 2009. Development of polysulfone
carbon molecular sieves mixed matrix membranes for CO2
removal from natural gas. International Conference
on Chemical, Biological and Environmental Engineering, Singapore.
Wu,
F., Li, L., Xu, Z., Tan, S. & Zhang, Z. 2006. Transport study
of pure and mixed gases through PDMS membrane. Chem. Eng. J.
117: 51-59.
Yoshimune,
M. & Haraya, K. 2013. CO2/CH4
mixed gas separation using carbon hollow fiber membranes. Energy
Procedia 37: 1109-1116.
Zhai,
S., Foster, J., Ward, S. & Harrison, M. 2012. Process for Gas Sweetening. U.S Patent 8298505 B2.
*Pengarang untuk surat-menyurat; email: laukokkeong@utp.edu.my