Sains Malaysiana 46(9)(2017): 1407–1411
http://dx.doi.org/10.17576/jsm-2017-4609-08
Monte Carlo Simulation of 6 MV Flattening Filter
Free Photon Beam of TrueBeam STx LINAC at
Songklanagarind Hospital
(Simulasi Monte Carlo 6 MV
Perataan Tanpa Penurasan Alur Foton TrueBeam
STx LINAC
di Hospital Songklanagarind)
M. ARIF
EFENDI1
2
, AMPORN
FUNSIAN2,
THAWAT
CHITTRAKARN1
& TRIPOB BHONGSUWAN1*
1Department
of Physics, Faculty of Science, Prince of Songkla University, 90110
Hatyai City, Songkla, Thailand
2Department
of Radiology, Faculty of Medicine, Prince of Songkla University
90110
Hatyai City, Songkla, Thailand
Diserahkan:
31 Ogos 2016/ Diterima: 17 Januari 2017
ABSTRACT
In this study, 6 MV
photon beam of TrueBeam STx Varian LINAC with Flattening Filter Free
(FFF) was simulated using PRIMO code.
The depth dose profiles for various jaws open fields and cross beam
profiles for various depths inside water phantom were determined
using Monte Carlo (MC)
simulation technique and validated with experimental result. The
experiments were performed using the Source to Surface Distance
(SSD)
technique with a 100 cm distance from target to the surface of water.
Simulation used 109
histories with the same configurations with experiments.
The depth dose profiles and cross beam profiles of 6 MV FFF photon beam was determined using MC simulations
and compared with experimental results. The results showed that
depth dose profiles and cross beam profiles by MC simulation accurately matched
with experimental results. The best result of depth dose profile
was obtained at 10×10 cm2 jaws open field with 98.53% passing
criterion whereas cross beam profile was obtained at 10 cm depth
inside water phantom with 88.96% passing criterion. The discrepancies
were caused by scatter of particle and incompatibility of primary
beam in PRIMO with
experiment.
Keywords: Flattening
Filter Free (FFF); Linear Accelerator (LINAC);
Monte Carlo simulation; PRIMO Code
ABSTRAK
Dalam kajian ini, 6
MV
alur foton daripada TrueBeam STx Varian LINAC dengan perataan tanpa penurasan
(FFF) disimulasikan menggunakan kod PRIMO.
Profil kedalaman dos untuk pelbagai ukuran rahang dan profil melintang
alur untuk pelbagai kedalaman dalam fantom air telah ditentukan
dengan menggunakan teknik simulasi Monte Carlo (MC) dan disahkan secara eksperimen.
Uji kaji telah dijalankan dengan menggunakan teknik jarak sumber
kepada permukaan (SSD) dengan jarak 100 cm dari sasaran
ke permukaan air. Simulasi menggunakan 109 peristiwa,
konfigurasi yang sama dengan uji kaji. Profil kedalaman dos dan
profil melintang alur daripada 6 MV
FFF alur foton ditentukan dengan menggunakan simulasi
MC
dan dibandingkan dengan keputusan uji kaji. Hasil
kajian menunjukkan bahawa hasil simulasi MC daripada profil kedalaman dos dan profil melintang alur
adalah sepadan tepat dengan keputusan uji kaji. Keputusan terbaik
profil kedalaman dos adalah pada 10×10 cm2 dengan kriteria lulus 98.53%.
Keputusan terbaik profil melintang alur adalah pada kedalaman 10
cm dalam fantom air dengan kriteria lulus 88.96%. Percanggahan adalah
disebabkan oleh serakan zarah dan ketidaksesuaian alur utama dalam
PRIMO berbanding
dengan uji kaji.
Kata kunci: Kod PRIMO; pemecut
linear (LINAC); perataan tanpa penurasan (FFF); simulasi Monte Carlo
RUJUKAN
Abdul
Haneefa, K., Siji Cyriac, T., Musthafa, M.M., Ganapathi Raman, R.,
Hridya, V.T., Siddhartha, A. & Shakir, K.K. 2014. FLUKA Monte
Carlo for basic dosimetric studies of dual energy medical linear
accelerator. Journal of Radiotherapy 46(37): 46098370.
American
Cancer Society. 2015. Cancer Facts & Figures. Atlanta,
Ga: American Cancer Society.
Atarod,
M., Shokrani, P. & Azarnoosh, A. 2013. Out-of-field beam characteristics
of a 6 MV photon beam: Results of a Monte Carlo study. Applied
Radiation and Isotopes 72: 182-194.
Belosi,
M.F., Rodriguez, M., Fogliata, A., Cozzi, L., Sempau, J., Clivio,
A., Nicolini, G., Vanetti, E., Krauss, H., Khamphan, C., Fenoglietto,
P., Puxeu, J., Fedele, D., Mancosu, P. & Brualla, L. 2014. Monte
Carlo simulation of truebeam flattening-filter-free beams using
varian phase-space files: Comparison with experimental data. Medical
Physics 41(5): 51707.
Beyer,
G.P. 2013. Commissioning measurements for photon beam data on three
truebeam linear accelerators, and comparison with trilogy and clinac
2100 linear accelerators. Journal of Applied Clinical Medical
Physics 14(1): 273-288.
Chetty,
I.J., Curran, B., Cygler, J.E., DeMarco, J.J., Ezzell, G., Faddegon,
B.A., Kawrakow, I., Keall, P.J., Liu, H., Charlie Ma, C.M., Rogers,
D.W.O., Seuntjens, J., Sheikh-Bagheri, D. & Siebers, J.V. 2007.
Report of the AAPM Task Group No. 105: Issues associated with clinical
implementation of Monte Carlo-based photon and electron external
beam treatment planning. Medical Physics 34(12): 4818-4853.
Graves,
Y.J., Jia, X. & Jiang, S.B. 2013. Effect of statistical fluctuation
in Monte Carlo based photon beam dose calculation on gamma index
evaluation. Physics in Medicine and Biology 58(6): 1839-1854.
Huang,
Y., Alfredo Siochi, R. & Bayouth, J.E. 2012. Dosimetric properties
of a beam quality-matched 6 MV unflattened photon beam. Journal
of Applied Clinical Medical Physics 13(4): 71-81.
Konefał,
A., Bakoniak, M., Orlef, A., Maniakowski, Z. & Szewczuk, M.
2015. Energy spectra in water for the 6 MV x-ray therapeutic beam
generated by clinac-2300 linac. Radiation Measurements 72:
12-22.
Low,
D.A., Harms, W.B., Mutic, S. & Purdy, J.A. 1998. A technique
for the quantitative evaluation of dose distributions. Medical
Physics 25(5): 656-661.
Mayles,
P., Nahum, A. & Rosenwald, J-C. 2007. Handbook of Radiotherapy
Physics: Theory and Practice. Boca Raton: CRC Press.
Reis
Junior, J.P., Salmon, H., Menezes, A.F., Pavan, G.A., Rosa, L.A.R.
& Silva, A.X. 2014. Simulation of Siemens ONCORTM expression
linear accelerator using phase space in the MCNPX code. Progress
in Nuclear Energy 70: 64-70.
Rodriguez,
M., Sempau, J. & Brualla, L. 2013. PRIMO: A graphical environment
for the Monte Carlo simulation of varian and elekta linacs. Strahlentherapie
Und Onkologie 189(10): 881-886.
Rodriguez,
M., Sempau, J., Fogliata, A., Cozzi, L., Sauerwein, W. & Brualla,
L. 2015. A geometrical model for the Monte Carlo simulation of the
truebeam linac. Physics in Medicine and Biology 60(11): N219-N229.
Saidi,
P., Tenreiro, C. & Sadeghi, M. 2013. Variance Reduction of
Monte Carlo Simulation in Nuclear Engineering Field. Rijeka,
Croatia: INTECH Open Access Publisher.
Sardari,
D., Maleki, R., Samavat, H. & Esmaeeli, A. 2010. Measurement
of depth-dose of linear accelerator and simulation by use of Geant4
computer code. Reports of Practical Oncology & Radiotherapy
15(3): 64-68.
Tartar,
A. 2014. Monte Carlo simulation approaches to dose distributions
for 6 MV photon beams in clinical linear accelerator. Biocybernetics
and Biomedical Engineering 34(2): 90-100.
Xiao,
Y., Kry, S.F., Popple, R., Yorke, E., Papanikolaou, N., Stathakis,
S., Xia, P., Huq, S., Bayouth, J., Galvin, J. & Yin, F.F. 2015.
Flattening filter-free accelerators: A report from the AAPM therapy
emerging technology assessment work group. Journal of Applied
Clinical Medical Physics 16(3): 5219.
*Pengarang untuk surat-menyurat;
email: tripop.b@psu.ac.th
|