Sains Malaysiana 46(9)(2017): 14411447
http://dx.doi.org/10.17576/jsm-2017-4609-12
Carbon Content in Different Seagrass Species in Andaman Coast of Thailand
(Kandungan Karbon dalam Pelbagai Spesies Rumpai Laut di Teluk
Andaman, Thailand)
MILICA
STANKOVIC1*,
JANMANEE
PANYAWAI1,
KAMARUDIN
JANSANIT2,
TIPAMAT
UPANOI3
& ANCHANA PRATHEP1
1Seaweed
and Seagrass Research Unit Department of Biology, Faculty of Science,
Prince of Songkla University
90110
Hat Yai, Thailand
2Marine
and Coastal Resources Research and Development Center, The Andaman
Coast, Thailand
3Marine
and Coastal Resources Research and Development Center, The Middle
Gulf of Thailand, Thailand
Diserahkan:
31 Ogos 2016/Diterima: 17 Januari 2017
ABSTRACT
Seagrass meadows have
one of the highest carbon sequestration and storage capacities than
any other ecosystems. Carbon that is stored in the ecosystem is
accumulated in the deposited sediment as well as in the living,
above and below ground biomass, with a different rate of carbon
sequestration and storage between the species. The objective of
this research was to investigate carbon storage in the living plants
and in the sediment among species of different size in tropical
waters. The samples were collected from Phuket province, Thailand,
in the high density monospecific patches of different size species
(Enhalus
acoroides as a big, Thalassia hemprhicii as a medium and
Halophila ovalis as a small size species). Total carbon and
carbon stored in above and below ground, was significantly different
between the species (p<0.05), with the highest values
in below ground parts of E. acoroides and T. hemprichii
238.10±85.07 and 134±21.55 g Dw m-2,
respectively. Average organic carbon in the sediment was significantly
different (p<0.05) as well, with E. acoroides having
highest organic carbon content in the deeper layers of the sediment
1.14±0.25 % Corg,
while the other two species had higher organic carbon in the top
and medium layers of sediment. The results of this preliminary research
propose that big size species have higher carbon content than smaller
species, which reflects in higher sequestration rates of carbon
from the ocean, thus reducing the ocean carbon budget. Moreover,
it provides necessary information on size of the species which is
the key for the future carbon storage studies in the region.
Keywords: Above ground;
below ground; organic carbon; seagrass; sediment
ABSTRAK
Padang rumpai laut mempunyai keupayaan
menyerap karbon dan kapasiti simpanan antara yang tertinggi berbanding
ekosistem yang lain. Karbon yang disimpan di dalam ekosistem yang
terkumpul di dalam sedimen didepositkan di dalam kehidupan, atas
dan bawah tanah biojisim, dengan kadar penyerapan dan simpanan karbon
yang berbeza antara spesies. Kajian ini bertujuan untuk mengkaji
penyimpanan karbon dalam tumbuh-tumbuhan dan sedimen antara spesies
berbeza saiz di perairan tropika. Sampel kajian telah dikumpul dari
daerah Phuket, Thailand, dalam tompok monospesifik berkepadatan
tinggi spesies dengan saiz yang berbeza (Enhalus acoroides Thalassia
hemprhicii yang besar, sebagai medium serta Halophila ovalis
sebagai satu spesies saiz kecil). Jumlah karbon dan karbon yang
disimpan di atas dan bawah tanah, adalah berbeza antara spesies
(p<0.05), dengan nilai tertinggi di bawah bahagian tanah E.
acoroides dan T. hemprichii 238.10±85.07 dan 134±21.55
g Dw m-2 , masing-masing. Purata karbon organik dalam sedimen adalah
berbeza secara signifikan (p<0.05) dengan E. acoroides
mempunyai karbon organik yang tertinggi di lapisan sedimen lebih
dalam 1.14±0.25% Corg, manakala kedua-dua spesies lain mempunyai
karbon organik yang lebih tinggi di lapisan atas dan sederhana enapan.
Hasil kajian awal ini mencadangkan bahawa spesies saiz besar mempunyai
kandungan karbon lebih tinggi daripada spesies yang lebih kecil,
yang mencerminkan meningkatnya kadar penyerapan karbon dari laut,
dengan itu mengurangkan bajet karbon lautan. Selain itu, ia menyediakan
maklumat yang diperlukan mengenai saiz spesies yang merupakan kunci
bagi kajian menyimpan karbon pada masa hadapan di rantau ini.
Kata kunci: Atas permukaan tanah; bawah permukaan tanah; enapan;
karbon organik; rumpai laut
RUJUKAN
Duarte, C.M. & Chiscano, C.L. 1999. Seagrass biomass and production:
A reassessment. Aquatic Botany 65(1-4): 159- 174.
Duarte, C.M. & Cebrian, J. 1996. The fate of marine autotropic
production. Limnology and Oceanography 41(18): 1758- 1788.
Duarte, C.M. 1991. Seagrass depth limits. Aquatic Botany 40:
363-377.
Duarte, C.M., Losada, I.M., Hendriks, I.E., Mazarrasa, I. & Marbą,
N. 2013. The role of coastal plant communities for climate change
mitigation and adaptation. Nature Climate Change 3: 961-968.
Duarte, C.M., Marbą, N., Gacia, E. & Fourqurean, J.W. 2010. Seagrass
community metabolism: Assessing the carbon sink capacity. Global
Biogeochemical Cycles 24(4): GB4032. DOI. 10.1029/2010GB003793.
Duarte, C.M., Middelburg, J.J. & Caraco, N. 2005. Major role
of marine vegetation on the oceanic carbon cycle. Biogeosciences
2: 1-8.
Duarte, C.M., Merino, M., Agawin, N.S.R., Uri, J., Fortes, M.D.,
Gallegos, M.E., Marbą, N. & Hemminga, M.A. 1998. Root production
and below ground seagrass biomass. Marine Ecology Progress Series
171: 97-108.
Fourqurean, J.W., Duarte, C.M., Kennedy, H., Marbą, N., Holmer, M.,
Mateo, M.A., Apostolaki, E.T., Kendrick, G.A., Krause- Jensen, D.,
McGlathery, K.J. & Serrano, O. 2012a. Seagrass ecosystems as
a globally significant carbon stock. Nature Geoscience 5:
505-509.
Fourqurean, J.W., Kenedrick, G.A., Collins, L.S., Chambers, R.M.
& Vaderklift, M.A. 2012b. Carbon, nitrogen and phosphorus storage
in subtropical seagrass meadows: Examples from Florida Bay and Shark
Bay. Marine and Freshwater Research 63: 967-983.
Kaewsrikhaw, R., Ritchie, R.J. & Prathep, A. 2016. Variations
of tidal exposures and seasons on growth, morphology, anatomy and
physiology of the seagrass Halophila ovalis (R.Br.) Hook.f. in a
seagass bed in Trang Province, Southern Thailand. Aquatic Botany
130: 11-20.
Lavery, P.S., Mateo, M.A., Serrano, O. & Rozaimi, M. 2013. Variability
of the carbon storage of searass habitats and its implications for
global estimates of blue carbon ecosystem service. PLoS ONE 8(9):
e73748.
Macreadie, P.I., Baird, M.E., Trevanthan-Tackett, S.M., Larkum, A.W.D.
& Ralph, P.J. 2014. Quantifying and modeling the carbon seqestration
capacity of seagrass meadows - A critical assessment. Marine
Pollution Bulletin 83: 430-439.
Marbą, N., Arias-Oritz, A., Masque, P., Kendrick, G.A., Mazarrasa,
I., Bastyan, G.R., Garcia-Orellana, J. & Duarte, C.M. 2015.
Impact of seagrass loss and subsequent revegetation on carbon sequestration
and stock. Journal of Ecology 103: 296-302.
Marbą, N.,
Duarte, C.M., Terrados, J., Halun, Z., Gacia, E. & Fortes, M.D.
2010. Effects of seagrass rhizospheres on seadiment redox conditions
in SE Asian coastal ecosystems. Estuaries and Coasts 33(1):
107-117.
Mcleod, E., Chmura, G.L.,
Bouillon, S., Salm, R., Bjork, M., Duarte, C.M., Lovelock, C.E.,
Schlesinger, W.H. & Siliman, B.R. 2011. A blueprint for blue
carbon: Toward and improved undersanding of the role of vegetated
coastal habitats in sequestring CO2. Frontiers in Ecology and
Environment 9(10): 552-560.
Pendleton,
L., Donato, D.C., Murray, B.C., Crooks, S., Jenkins, W.A., Sifleet,
S., Craft, C., Fourqurean, J.W., Kauffman, J.B., Marbą, N., Megonigal,
P., Pidgeon, E., Herr, D., Gordon, D. & Baldera, A. 2012. Estimating
global Blue carbon emssions from conversion and degradation of
vegetated coastal ecosystems. PLoS ONE 7(9): e43542.
Phang,
V.X.H., Chou, L.M. & Friess, D. 2015. Ecosystem carbon stock
across a tropical interdial habitat mosaic of mangrove forest, seagrass
meadow, mudflat and sandbar. Earth Surgace Process Landforms
40: 1387-1400.
Poovachinranon,
S. & Chasang, H. 1994. Community structure and biomass of seagrass
beds in the Andaman Sea. I. Mangrove-associated seagrass beds. Phuket
Marine Biologucal Center Research Bulletin 59: 53-64.
Prathep,
A. 2012. Seagrass Bed as a Carbon Sink in Ranong Biosphere Reserve
and Trang - Haad Chao Mai National Park; An Important Role of Seagrass.
Man and Biosphere (MAB) Program, UNESCO.
Prathep,
A., Rattanachot, E. & Tuntiprapas, P. 2010. Seasonal variations
in seagrass precentage cover and biomass at Koh Tha Rai, Nakhon
Si Thammarat province, Gulf of Thailand. Sonklanakarin Journal
of Science and Technology 32(5): 497.
Rattanachot,
E. & Prathep, A. 2015. Species specific effects of three morpholically
different below ground seagrasses on sediment properties. Estuarine,
Coastal and Shelf Science 167: 427-435.
Rattanachot,
E. & Prathep, A. 2011. Temporal variation in growth and reporduction
of Enhalus acoroides (L.f) Royle in a monospecific meadow
in Haad Chao Mai National Park, Trang Province, Thailand. Botanica
Marina 54: 201-207.
Rozaimi,
M., Lavery, P.S., Serrano, O. & Kyrwood, D. 2016. Long-term
carbon storage and its recent loss in an estuarine Posidonia
australis meadow (Albany, Western Australia). Estuarine,
Coastal and Shelf Science 171: 58-65.
RStudio
Team. 2015. R Studio: Integrated Development for R. Boston,
MA: RStudio Inc. http://www.rstudio.com/.
Supriadi,
S., Kaswadji, R.F., Bengen, D.G. & Hutomo, M. 2014. Carbon stock
of seagrass community in Barranglompo Island, Makassar. Ilmu
Kelautan 19: 1-10.
Vermaat,
J.E., Agawin, N.S.R., Duarte, C.M., Fortes, M.D., Marbą, N. &
Uri, J.S. 1995. Meadow maintenance, growth and productivity of mized
Philippine seagrass bed. Marine Ecology Progress Series 124:
215-225.
Vichkovitten,
T. 1998. Biomass, growth and productivity of seagrass; Enhalus
acoroides (Linn.f) in Khug Kraben Bay, Chanthaburi, Thailand.
Kasetsart Journal: Natural Science 32: 109-115.
*Pengarang untuk surat-menyurat;
email: svesemenja@gmail.com
|