Sains Malaysiana 47(11)(2018): 2637–2645 
              http://dx.doi.org/10.17576/jsm-2018-4711-06 
                
               
              Genetic Diversity among Tomato Accessions 
                based on Agro-Morphological Traits 
              (Kepelbagaian Genetik 
                antara Penerimaan Tomato berdasarkan Ciri Agro 
                Morfologi)
              IZHAR HUSSAIN1*, 
                SHER 
                ASLAM 
                KHAN1, 
                SAJID 
                ALI2, 
                ABID 
                FARID1, 
                NAUSHAD 
                ALI1, 
                SARDAR 
                ALI1, 
                SHAH 
                MASAUD1, 
                IJAZ 
                HUSSAIN1, 
                KAMRAN 
                AZEEM1 
                & HANEEF RAZA3
               
              1Department of Agricultural Sciences, 
                University of Haripur, 22620, Pakistan
               
              2Institute of Biotechnology and Genetic 
                Engineering, University of Agriculture Peshawar, KPK, Pakistan
               
              3Department of plant breeding and 
                Genetic, University of Agriculture Peshawar, KPK, Pakistan
               
              Diserahkan: 
                19 Disember 2017/Diterima: 28 Jun 2018
               
              ABSTRACT
              It is of great importance to 
                know about the genetic diversity, conservation and classification 
                for further utilization of tomato germplasm resources. Therefore, 
                40 tomato accessions were evaluated on the basic of agro-morphological 
                traits for genetic diversity in 2014. The experiment was conducted 
                at Agricultural Research Farm, University of Haripur and farmer 
                field in Swabi, Khyber Pakhtunkhwa, Pakistan. Principal component 
                analysis showed that five out of 27 principal components with 
                an eigenvalue above 1.0 were considered for 74.10% of the total 
                variance. The major contributing traits in variations were days 
                to flowering (DFL), 
                days to fruiting (DFR), fruit size (FS), 
                fruit weight plant-1 (FW), 
                yield plot-1 (YPP), yield hectare-1 (YPH), 
                leaf length (LL), predominant fruit shape (PDFS), 
                fruit length (FL), fruit width (FWidth), clusters plant-1 (CPP), 
                fruits plant-1 (FPP) and plant height (PH). 
                The scattered plot of the PC’s revealed that the accessions were 
                scattered in all the quarters, which is also a representative 
                that high level of genetic variability was present. FW and FL were 
                positively correlated with YPH. However, the remaining yield components 
                indirectly contributed YPH. Cluster analysis divided 
                40 accessions into four main clusters (I, II, III and IV), each 
                of which having 12, 11, 07 and 10 accessions. The accessions in 
                clusters I and II were statistically similar and performed better 
                in terms of yield and yield related traits. Grouping into different 
                clusters was associated with their agro-morphological differences. 
                These results could be serving as a useful resource for further 
                characterization, preservation and breeding programs. 
               
              Keywords: Accessions; analysis; 
                cluster; diversity; tomato
               
              ABSTRAK
              Adalah penting untuk mengetahui 
                tentang kepelbagaian genetik, pemuliharaan dan pengelasan bagi 
                penggunaan sumber germplasma tomato. Oleh itu, 40 penerimaan tomato 
                telah dinilai berasaskan ciri agro morfologi bagi kepelbagaian 
                genetik pada tahun 2014. Uji kaji ini telah dijalankan di Ladang 
                Penyelidikan Pertanian, Universiti Haripur dan padang petani di 
                Swabi, Khyber Pakhtunkhwa, Pakistan. Analisis komponen utama menunjukkan 
                bahawa lima daripada 27 komponen utama dengan nilai eigen melebihi 
                1.0 telah diambil kira 74.10% daripada jumlah varians. Ciri utama 
                penyumbang dalam variasi ialah hari untuk berbunga (DFL), 
                hari untuk berbuah (DFR), saiz buah (FS), 
                berat pokok buah-buahan-1 (FW) 
                hasil plot-1 (YPP), hasil hektar-1 (YPH), 
                panjang daun (LL), bentuk utama buah-buahan (PDF), 
                panjang buah (FL), lebar buah (FWidth), kelompok tanaman-1 (CPP), 
                buah tanaman-1 (FPP) dan ketinggian tanaman (PH). 
                Plot PC yang berselerak menunjukkan penerimaan adalah berselerak 
                di dalam semua bahagian yang mewakili kepelbagaian genetik tahap 
                tinggi telah berlaku. FW dan FL berkorelasi 
                secara positif dengan YPH. Walau bagaimanapun, komponen hasil 
                baki secara tidak langsung menyumbang kepada YPH. 
                Analisis kelompok membahagikan 40 penerimaan kepada empat kelompok 
                utama (I, II, III dan IV) dengan setiap daripadanya mempunyai 
                12, 11, 07 dan 10 penerimaan. Penerimaan untuk kelompok I dan 
                II adalah sama secara statistik dan menunjukkan hasil yang lebih 
                baik dari sudut penghasilan dan ciri berdasarkan penghasilan. 
                Pengelompokan kepada kelompok yang berlainan dikaitkan dengan 
                perbezaan agro morfologi mereka. Keputusan kajian ini sangat membantu 
                sebagai satu sumber yang berguna untuk kesinambungan pencirian, 
                pemeliharaan dan program pembiakbakaan. 
               
              Kata kunci: Analisis; kluster; kepelbagaian; penerimaan; tomato
               
              RUJUKAN
              Basavaraj, N. & 
                Dhotre, M. 2012. Correlation and path co-efficient studies in 
                tomato. Asian J. Hortic. 7(2): 379-384. 
              Bernousi, I., Emami, 
                A., Tajbakhsh, M., Darvishzadeh, R. & Henareh, M. 2011. Studies 
                on genetic variability and correlation among the different traits 
                in Solanum lycopersicum L. Not. Bot. Hort. Agrobot. 
                Cluj. 39(1): 152-158. 
              Bhattarai, K., 
                Louws, F.J., Williamson, J.D. & Panthee, D.R. 2016. Diversity 
                analysis of tomato genotypes based on morphological traits with 
                commercial breeding significance for fresh market production in 
                eastern USA. Austr. J. Crop Sci. 10(8): 1098-1103. 
              Cebolla-Cornejo, 
                J., Rosello, S. & Nuez, F. 2013. Phenotypic and genetic diversity 
                of Spanish tomato landraces. Scientia Hortic. 162: 150-164. 
                
              Chernet, S., Belew, 
                D. & Abay, F. 2014. Genetic diversity studies for quantitative 
                traits of tomato (Solanum lycopersicon L.) genotypes in 
                Western Tigray, Northern Ethiopia. J. Plant Breed. 
                Crop Sci. 6(9): 105-113. 
              Crossa, J. & 
                Franco, D.J. 2004. Statistical methods for classifying genotypes. 
                Euphytica 137: 19-37. 
              De-Souza, L.M., 
                Melo, P.C.T., Luders, R.R. & Melo, A.M. 2012. Correlations 
                between yield and fruit quality characteristics of fresh market 
                tomatoes. Hortic. Bras. 30(4): 627-631. 
              Dhankhar, S.K. 
                & Dhankhar, B.S. 2006. Variability, heritability, correlation 
                and path-coefficient studies in tomato. Haryana J. Hortic. 
                Sci. 35(1/2): 179. 
              FAOSTAT. 2015. 
                Statistical Databases. Food and Agriculture 
                Organization. Accessed by 10 April 2017 at http://faostat3. fao.org/home/E. 
                
              Flint-Garcia, S.A., 
                Thuillet, A.C., Yu, J.M., Pressoir, G., Romero, S.M., Mitchell, 
                S.E., Doebley, J., Kresovich, S., Goodman, M.M. & Buckler, 
                E.S. 2005. Maize association population: A high-resolution platform 
                for quantitative trait locus dissection. Plant J. 44(6): 
                1054-1064. 
              Hanson, P., Chen, 
                J.T., Kuo, C.G., Morris, R. & Opena, R.T. 2000. Suggested 
                cultural practices for tomato. Int. Coop. Guide AVRDC #00-508. 
                pp. 1-8. 
              Harer, P.N., Lad, 
                D.B. & Bhor, T.J. 2002. Correlation and path analysis studies 
                in tomato. J. Maharashtra Agric. Uni. 27(3): 
                302-303. 
              Haydar, A., Mandal, 
                M.A., Ahmed, M.B., Hannan, M.M., Karim, R., Razvy, M.A., Roy, 
                U.K. & Salahin, M. 2007. Studies on genetic variability and 
                interrelationship among the different traits in tomato (Lycopersicon 
                esculentum Mill.). Middle-East J. Sci. Res. 
                2(3-4): 139-142. 
              Henareh, M., Dursun, 
                A. & Mandoulakani, B.A. 2015. Genetic diversity in tomato 
                landraces collected from Turkey and Iran revealed by morphological 
                characters. Acta. Sci. 
                Polonorum- Hortorum Cultus 14: 87-96. 
              Hu, X.R., Wang, 
                H., Chen, J. & Yang, W.C. 2012. Genetic diversity of Argentina 
                tomato varieties revealed by morphological traits, simple sequence 
                repeat, and single nucleotide polymorphism markers. Pak. 
                J. Bot. 44: 485-492. 
              Huang, X.H., Zhao, 
                Y., Wei, X.H., Li, C.Y., Wang, A., Zhao, Q., Li, W.J., Guo, Y.L., 
                Deng, L.W., Zhu, C.R., Fan, D.L., Lu, Y.Q., Weng, Q.J., Liu, K.Y., 
                Zhou, T.Y., Jing, Y.F., Si, L.Z., Dong, G.J., Huang, T., Lu, T.T., 
                Feng, Q., Qian, Q., Li, J.Y. & Han, B. 2012. Genome-wide association 
                study of flowering time and grain yield traits in a worldwide 
                collection of rice germplasm. Nat. Genet. 44(1): 
                32-53. 
              Huang, X., Wei, X., Sang, T., Zhao, 
                Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., Li, 
                M., Fan, D., Guo, Y., Wang, A., Wang, L., Deng, L., Li, W., Lu, 
                Y., Weng, Q., Liu, K., Huang, T., Zhou, T., Jing, Y., Li, W., 
                Lin, Z., Buckler, E.S., Qian, Q., Zhang, Q.F., Li, J. & Han, 
                B. 2010. Genome-wide association studies 
                of 14 agronomic traits in rice landraces. Nat. Genet. 
                42(11): 961-976.
              Iqbal, Q., Saleem, M.Y., Hameed, 
                A. & Asghar, M. 2014. Assessment of genetic divergence in 
                tomato through agglomerative hierarchical clustering and principal 
                component analysis. Pak. J. Bot. 46(5): 1865-1870. 
                
              Islam, B.M.R., Ivy, N.A., Rasul, 
                M.G. & Zakaria, M. 2010. Character association and path analysis 
                of exotic tomato (Solanum lycopersicum L.) genotypes. Bangl. 
                J. Plant Breed. Genet. 23(1): 13-18. 
              Jackson, J. 1991. A User’s Guide 
                to Principal Components. New York: John Wiley & Sons. 
                
              Khadivi-Khub, A., Zamani, Z. & 
                Bouzari, N. 2008. Evaluation of genetic diversity in some Iranian 
                and foreign sweet cherry cultivars by using RAPD molecular markers 
                and morphological traits. Hortic. Environ. Biotechnol. 
                49: 188- 196. 
              Kumar, R., Mishra, N.K., Singh, 
                J., Rai, G.K., Verma, A. & Rai, M. 2006. Studies on yield 
                and quality traits in tomato (Solanum lycopersicon Mill.). 
                Veg. Sci. 33(2): 126-132. 
              Mazzucato, A., Papa, R., Bitocchi, 
                E., Mosconi, P., Nanni, L., Negri, V., Picarella, M.E., Siligato, 
                F., Soressi, G.P., Tiranti, B. & Veronesi, F. 2008. Genetic 
                diversity, structure and markertrait association in a collection 
                of Italian tomato (Solanum lycopersicum L.) landraces. 
                Theor. Appl. Genet. 116: 657-669. 
              MNFSR. 2014-2015. Fruits, Vegetables and Condiments Statistics 
                of Pakistan. Government of Pakistan, Ministry of National 
                Food Security and Research. p. 69. 
              Mohammadi, S.A. & Prasanna, 
                B.M. 2003. Analysis of genetic diversity in crop plants - salient 
                statistical tools and considerations. Crop Sci. 43: 1235-1248. 
                
              Mohanty, B.K. 2002a. Studies on 
                variability, heritability, interrelationship and path analysis 
                in tomato. Anl. Agric. Res. 2(1): 65-69. 
                
              Mohanty, B.K. 2002b. Genetic variability, 
                correlation and path coefficient studies in tomato. Ind. 
                J. Agric. Res, 37(1): 68-71. 
              Nikoumanesh, K., Ebadi, A., Zeinalabedini, 
                M. & Gogorcena, Y. 2011. Morphological and molecular variability 
                in some Iranian almond genotypes and related Prunus species 
                and their potentials for rootstock breeding. Sci. Hortic. 
                129: 108-118. 
              Nwosu, D.J., Onakoya, O.A., Okere, 
                A.U., Babatunde, A.O. & Popoola, A.F. 2014. Genetic variability 
                and correlations in rainfed tomato (Solanum spp.) accessions 
                in Ibadan, Nigeria. Greener J. Agric. Sci. 
                4(5): 211-219. 
              Prasad, V.S.R.K. & Rai, M. 1999. 
                Genetic variation, component association and direct and indirect 
                selections in some exotic tomato accessions. Ind. J. 
                Hortic. 56(3): 262-266. 
              Rashid, M., Cheema, A.A. & Ashraf, 
                M. 2008. Numerical analysis of variation among basmati rice mutants. 
                Pak. J. Bot. 40(6): 2413-2417. 
              Reddy, B.R., Reddy, M.P., Begum, 
                H. & Sunil, N. 2013. Genetic diversity studies in tomato (Solanum 
                lycopersicum L.). IOSR J. Agric. Veterinary 
                Sci. 4(4): 53-55. 
              Reif, J.C., Melchinger, A.E. & 
                Frisch, M. 2005. Genetical and mathematical properties of similarity 
                and dissimilarity coefficients applied in plant breeding and seed 
                bank management. Crop Sci. 45: 1-7. 
              Singh, A.K. 2009. Genetic variability, 
                heritability and genetic advance studies in tomato under cold 
                arid region of Ladakh. Ind. J. Hortic. 66(3): 
                400-403. 
              Singh, A.K. 2007. Correlation and 
                path coefficient studies in tomato under cold arid conditions 
                of Ladakh. Haryana J. Hortic. Sci. 36(3/4): 
                346-347. 
              Sneath, P.H. & Sokal, R.R. 1973. 
                Numerical Taxonomy: The Principles and Practice of Numerical 
                Classification. San Francisco, USA: W.F. Freeman & Co. 
                
              Steel, R.G.D. & Torrie, J.H. 
                1980. Principles and Procedures of Statistics. 2nd ed. 
                New York: McGraw-Hill. 
              Sudre, C.P., Leonardecz, E., Rodrigues, 
                R., Junior, A.T.D.A., Moura, M.D.C.L. & Gonçalves, L.S.A. 
                2007. Genetic resources of vegetable crops: A survey in the Brazilian 
                germplasm collections pictured through papers published in the 
                journals of the Brazilian Society for Horticultural Science. Hortic. 
                Bras. 25: 496-503. 
              Terzopoulos, P.J. & Bebeli, 
                P.J. 2008. DNA and morphological diversity of selected Greek tomato 
                (Solanum lycopersicum L.) landraces. Sci. Hortic. 
                116: 354-361. 
              Thornsberry, J.M., Goodman, M.M., 
                Doebley, J., Kresovich, S., Nielsen, D. & Buckler, E.S. 2001. 
                Dwarf8 polymorphisms associate with variation in flowering time. 
                Nat. Genet. 28(3): 286-289. 
              Yi, S-S., Jatoi, S.A., Fujimura, 
                T., Yamanaka, S., Watanabe, J. & Watanabe, K.N. 2008. Potential 
                loss of unique genetic diversity in tomato landraces by genetic 
                colonization of modern cultivars at a non-center of origin. Plant 
                Breed. 127: 189-196. 
              Zhou, R., Wu, Z., Cao, X. & 
                Jiang, F.L. 2015. Genetic diversity of cultivated and wild tomatoes 
                revealed by morphological traits and SSR markers. Genet. 
                Mol. Res. 14: 13868-13879. 
               
              *Pengarang untuk surat-menyurat; 
                email: izharhussain29@gmail.com