Sains Malaysiana 47(2)(2018): 287-294
              
          
              http://dx.doi.org/10.17576/jsm-2018-4702-10  
          
             
          
          Effect of Chitosan Coating
            on Chilling Injury, Antioxidant Status and Postharvest Quality of Japanese Cucumber
            during Cold Storage
            
          
          (Kesan Perlakuan Bahan
            Salut Kitosan ke atas Kecederaan Sejuk, Status Antioksidan dan Kualiti Lepas Tuai
            Timun Jepun semasa Penyimpanan Suhu Rendah)
            
          
          
             
          
          Nur
            Fatin Afifah Hashim1, Azhane Ahmad1,2* & Paa Kwesi
            Bordoh1
  
          
          
             
          
              1School of Biosciences, 
                Faculty of Science, University of Nottingham Malaysia Campus, 
                 
          43500 Semenyih, Selangor Darul
            Ehsan, Malaysia
            
          
          
             
          
              2School of Food Science 
                and Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, 
                Terengganu Darul Iman, Malaysia  
          
             
          
          Diserahkan: 3 Januari 2017/Diterima:
            17 Julai 2017
            
          
          
             
          
          ABSTRACT
            
          
          
             
          
          Japanese cucumber (Cucumis
            sativus L.) could easily develop
              chilling injury when held at 7oC or below, thus limiting its
              storability and reduces consumer preference. Chitosan coating is known to be
              one of the methods used for preserving perishable fresh produce. This work was
              extended out to look into the efficacy of low molecular weight (LMW) chitosan
              coatings on chilling injury (CI), antioxidant levels and shelf life quality of
              Japanese cucumber. Fruit were coated with 0.5, 1.0 and 1.5% chitosan prior to cold
              storage at 7oC and 90-95% relative humidity (RH) for 12 days. The result
              showed that fruit coated with lowest concentration of chitosan (0.5%) was the most
              effective in alleviating chilling injury symptoms and reduced the increase of
              lipid peroxidation (MDA content) compared to higher concentrations (1.0 and
              1.5%). Furthermore, when Japanese cucumbers were coated with 0.5% chitosan, it
              was able to maintain the postharvest quality and storability with higher
              firmness and delayed increase of weight loss. On the other hand, cucumber
              coated with 1.5% chitosan demonstrated high level of ascorbate peroxidase (APX)
              and catalase (CAT) activities than in 0.5 and 1.0% chitosan. This finding suggests
              a role for chitosan coating in alleviating oxidative stress that would lead to
              CI problems during cold storage.
  
          
             
          
          Keywords: Antioxidant enzyme activity; chilling tolerance; chitosan;
            postharvest quality
            
          
          
             
          
          ABSTRAK
            
          
          
             
          
          Fenomena kecederaan sejuk (KS) seringkali berlaku ke
            atas timun Jepun (Cucumis sativus L.) yang disimpan pada suhu 7oC atau lebih
              rendah, sekaligus mengehadkan hayat simpanan di samping mempengaruhi kualiti buah
              untuk diterima oleh pengguna. Bahan salut kitosan dikenali sebagai salah satu
              kaedah lepas tuai yang digunakan untuk mengekalkan kualiti buah daripada mudah
              rosak. Kajian ini dijalankan untuk mengkaji keberkesanan bahan salut kitosan
              yang berberat molekul rendah ke atas kecederaan sejuk (KS), aktiviti antioksidan
              dan kualiti hayat simpanan timun Jepun. Buah diberikan perlakuan bahan salut kitosan
              dengan kepekatan 0.5, 1.0 dan 1.5% dan disimpan pada suhu rendah 7oC
              dengan kelembapan relatif 90-95% selama 12 hari. Keputusan kajian menunjukkan buah
              yang disalut dengan kepekatan kitosan paling rendah (0.5%) berupaya
              mengaleviasi simptom KS dan menindas aras peningkatan peroksidaan lipid
              (kandungan MDA) secara signifikan berbanding kitosan pada kepekatan lebih
              tinggi (1.0 dan 1.5%). Perlakuan 0.5% kitosan juga berupaya memelihara kualiti
              timun Jepun, memanjangkan hayat simpanan dengan memperlahankan kemerosotan
              ketegaran dan kehilangan berat. Sebaliknya, buah yang disalut kitosan pada
              kepekatan 1.5% menunjukkan aktiviti enzim katalase (CAT) dan askorbat
              peroksidase (APX) yang lebih tinggi berbanding buah yang disalut dengan 0.5 dan
              1.0% kitosan. Keputusan kajian ini mencadangkan perlakuan bahan salut kitosan
              berupaya mengurangkan kepayahan oksidatif yang dipercayai menyebabkan masalah
              KS semasa penyimpanan suhu rendah.
  
          
             
          
          Kata kunci: Aktiviti antioksidan enzimatik; kitosan; kualiti lepas
            tuai; toleransi kecederaan sejuk
            
          
          
             
          
          RUJUKAN
            
          
          
             
          
          Ali, Z.M., Chin, L.H., Marimuthu, M. & Lazan, H. 2004. Low temperature storage and modified
            atmosphere packaging of carambola fruit and their effects on ripening related texture changes, wall modification
              and chilling injury symptoms. Postharvest Biol. Technol. 33: 181-192.
  
          Al-Juhaimi, F., Ghafoor, K. & Babiker, E.E. 2012. Effect of gum arabic edible coating on weight      loss, firmness and sensory characteristics
            of cucumber (Cucumis sativus L.)
            fruit during storage. Pak. J. Bot. 44: 1439-1444.
  
          Badawy, M.E.I. & Rabea, E.I. 2009. Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of
            tomato fruit. Postharvest Biol. Technol. 51: 110-117.
  
          Bautista-Banos, S., Hernandez-Lauzardo, A.N.,
            Velazquez-del Valle, M.G., Hernandez-Lopez, M., Ait-Barka, E., Bosquez-Molina,
            E. & Wilson, C.L. 2006. Chitosan as potential natural compound to control
            pre and postharvest disease of horticultural commodities. Crop Proc. 25: 108-118.
  
          
          Bautista-Banos, S., Hernandez-Lopez, M.,
            Bosquez-Molina, E. & Wilson, C.L. 2003. Effects of chitosan and plant
            extracts on growth of Colletotricum
              gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Proc. 22: 1087-1092.
  
          
          Beers, R.F. & Sizers, I.W. 1952. A spectrophotometric method for
            measuring the breakdown    of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133-140.
  
          Benjakul,
            S., Visessanguan, W., Tanaka, M., Ishizaki, S. & Suthidham, R. 2000. Effect
              of chitin and chitosan on gelling properties of surimi from barred garfish
              (Hemiramphus far). J. Sci. Food Agric. 81(1): 102-108.
  
          Cao, S., Zheng, Y., Wang, K.,
            Jin, P. & Rui, H. 2009. Methyl jasmonate reduces chilling injury and
            enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem. 115: 1458-1463.
  
          
          Chen, B. & Yang, H. 2012. 6-Benzylaminopurine alleviates chilling injury of postharvest cucumber fruit
            through modulating antioxidant system and energy status. J. Sci. Food Agric. 93: 1915-1921.
  
          Dang, Q.F., Yan, J.Q., Li, Y., Cheng, X.J., Liu, C.S. & Chen, X.G. 2010. Chitosan acetate as an active coating material and its effects on the
            storing of Prunus aviumb L. J. Food Sci. 75: 125-131.
            
          
          El Ghaouth, A., Arul,
            J., Asselin, A. & Benhamou, N. 1992. Antifungal activity of chitosan on
            postharvest pathogens: Induction of morphological and cytological alterations
            in Rhizopus stolonifer. Mycological Res. 96: 769-779.
  
          Fang, S., Li, C.F. &
            Shih, C. 1994. Antifungal activity of
              chitosan and its preservative effect on low-sugar candied kumquat. J. Food Prot. 56: 136-140.
  
          Garcia, M., Casariego, A., Diaz, R. & Roblejo, L. 2014. Effect of edible chitosan/zeolite coating on tomatoes quality during refrigerated
            storage. Emir. J. Food Agriculture. 26: 238-246.
  
          Ghasemnezhad, M., Shiri, M.A. & Sanavi, M. 2010. Effect of chitosan coatings on some quality indices of
            apricot (Prunus armeniace L.) during
            cold storage. Caspian J. Env. Sci. 8: 25-33.
  
          Gol, N.B., Patel, P.R. & Rao, T.V.R. 2013. Improvement
            of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 85: 185-195.
  
          Hariyadi, P. & Parkin, K.L. 1991. Chilling-induced oxidative stress in
            cucumber fruits. Postharvest Biol. Technol. 1: 33-45.
  
          Hirano, S. & Nagao,
            N. 1989. Effects of chitosan, pectic
              acid, lysozyme, and chitinase on the growth of several phytopathogens. Agri. and Biol. Chem. 53(11): 3065-3066.
  
          Hoagland, P.D. & Parris, N. 1996.
            Chitosan/pectin laminated films. J. Agric.
              Food Chem. 44(7): 1915-1919.
  
          
          Hodges, D.M., DeLong, J.M., Forney, C.F. & Prange, R.K. 1999. Improving the thiobarbituric
            acid reactive-substances assay for estimating lipid peroxidation in plant tissues containing
              anthocyanin and other interfering compounds. Planta 207: 604-611.
  
          Hong, K., Xie, J., Zhang, L., Sun, D. & Gong, D.
            2012. Effects of chitosan coating on postharvest life and quality of guava (Psidium
              guajava L.) fruit during cold storage. Scientia Hort. 144: 172-178.
  
          
          Imahori, Y., Takemura, M. & Bai, J. 2008. Chilling-induced oxidative stress
            and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biol. Technol. 49: 54-60.
  
          Kulpinsky, P., Nishimura, S.I. &
            Tokura, S. 1997. Preparation and characterization of functionalized chitosan
            fibers. Adv. Chitin Sci. 2: 334-338.
  
          Lafontaine,
            P.J. & Benhamou, N. 1996. Chitosan treatment: An emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxys-porum f. sp.
              radicis-lycopersici. Biocontrol Sci. Technol. 6: 11-124.
  
          Lang, G. & Clausen,
            T. 1989. The use of chitosan in
              cosmetics. In Chitin and Chitosan. Sources, Chemistry, Biochemistry. Physical Properties
                and Applications, edited by Skjak- Braek, G., Anthosen, T. & Stanford,
              P.A. London: Elsevier Applied Science. pp. 139-147.
  
          Liu, J., Tian, S.P., Meng, X.H. & Xu, Y. 2007.
            Control effects of chitosan on postharvest diseases and physiological response
            of tomato fruit. Postharvest Biol. Technol. 44: 300-306. 
  
          Liu, X.D., Nishi, N., Tokura, S. &
            Sakari, N. 2001. Chitosan coated cotton fiber: Preparation
              and physical properties. Carbohydr. Polym. 44(3): 233-238.
  
          Makino, Y. & Hirata,
            T. 1997. Modified atmosphere packaging of fresh produce
              with a biodegradable laminate chitosan-cellulose and polycaprolactone. Postharvest Biol. Technol. 10(3):
              247-254.
  
          Maqbool, M., Ali, A., Alderson, P.G., Zahid, N. & Siddiqui, Y. 2011. Effect of a novel edible composite coating based on gum
            arabic and chitosan on biochemical and physiological
              responses of banana fruits during cold storage. J. Agric. Food Chem. 59: 5474-5482.
  
          Nakano, Y. & Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
            
          
          Nishimura, Y. 1997. Physiological effects of chitosan
            administered for long period. Food Style 21: 50-52.
  
          Nukuntornprakit, O., Chanjirakul, K. & Doorn, W.G.V. 2015. Chilling
            injury in pineapple fruit: Fatty acid composition and
              antioxidant metabolism. Postharvest Biol. Technol. 99: 20-26.
  
          Pennisi,
            E. 1992. Sealed in plastic edible film. Sci. News 141: 12-13.
  
          Perdones, A., Sánchez-González,
            L., Chiralt, A. & Vargas,
              M. 2012. Effect of chitosan-lemon essential oil coatings on
                storage-keeping quality of strawberry. Postharvest Biol. Technol. 70: 32-41.
  
          Pushkala, R., Raghuram,
            P.K. & Srividya,
              N.
                2013. Chitosan based powder coatin technique to enhance phytochemicals and shelf life
                  quality of radish shreds.  Postharvest Biol. Technol. 86: 402-408.
  
          Qian, C., He, Z., Zhao, Y., Mi, H., Chen, X. & Mao, L. 2012. Maturity-dependent chilling tolerance regulated by
            the antioxidative capacity in postharvest cucumber (Cucumis sativus L.) fruits. J.
              Sci. Food Agric. 93: 626-633.
  
          Ren, H.,
            Endo, H. & Hayashi, T. 2001. Antioxidative and
              antimutagenic activities and polyphenol content of pesticide-free and
              organically cultivated green vegetable using water-soluble chitosan as a soil
              modifier and leaf surface spray. J. Sci.
                Food Agric. 81(15): 1426-1432.
  
          Roller,
            S. & Covill, N. 1999. The
              antifungal properties of chitosan in laboratory media in apple juice. Int. J. Food Microbiol. 47(1-2): 67-77.
  
          Romanazzi, G., Feliziani,
            E., Santini, M. & Landi,
              L.
                2013. Effectiveness
                  of postharvest treatment with chitosan and
                    other resistance inducers in the control of storage decay of strawberry. Postharvest Biol. Technol. 75: 4-27.
  
          Sala, J.M. & Lafuente,
            M.T. 2004. Antioxidant enzymes activities and rindstaining in ‘Navelina’ oranges as affected by storage relative
              humidity and ethylene conditioning. Postharvest Biol. Technol. 3: 277-285.
  
          Sapers, G.M. 1992. Chitosan enhances
            control of enzymatic browning in apple and pear juice by filtration. J. Food Prot. 57(5): 1192-1193.
  
          
          Shahidi, F., Kamil, J.K.,
            Jeon, Y.J. & Kim, S.K. 2002. Antioxidant
              role of chitosan in a cooked cod (Gadus morhua)
              model system. J. Food Lipids 9(1): 57-64.
  
          Tan, C.K., Ali, Z.M. & Zainal, Z. 2012. Changes
            in ethylene production, carbohydrase activity and  antioxidant status in pepper fruits
              during ripening. Scientia Hort. 142: 23-31.
  
          Terry, L.A. & Joyce, D.C. 2004. Elicitors of induced disease
            resistance in postharvest horticultural crops: A brief review. Postharvest
              Biol. Technol. 32: 1-13.
  
          Uchida, Y., Lzume, M. & Ohtakara, A. 1989. Preparation
            of chitosan oligomers with purified chitosanase and its application. In Chitin and Chitosan: Sources, Chemistry,
              Biochemistry, Physical Properties and Applications, edited by Skjak-Brak, G.,
            Anthonsen, T. & Sandford, P.A. London: Elsevier Applied Science. pp. 373-382.
  
          Wang, S.Y. & Gao, H. 2013. Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and
            postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT-Food Sci. Technol. 52: 71-79.
  
          Wang, B., Wang, J., Liang, H., Yi, J., Zhang, J., Lin, L., Wu, Y., Feng, X., Cao, J. & Jiang, W. 2008. Reduced chilling injury in mango fruit by
            2,4-dichlorophenoxyacetic acid and the antioxidant response. Postharvest Biol. Technol. 48: 172-181. 
  
          Xu, M., Dong, J., Zhang, M., Xu, X. & Sun, L. 2012. Cold-induced endogenous nitric oxide generation plays a role in chilling tolerance of
            loquat fruit during postharvest storage. Postharvest Biol. Technol. 65: 5-12.
  
          Xu, S., Chen, X. & Sun,
            D.W. 2001. Preservation of kiwifruit coated with edible film at ambient
            temperature. J. Food Engineering 50:
            211-216.
  
          
          Yang, H., Wu, F. & Cheng, J. 2011. Reduced
            chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem. 127: 1237-1242.
  
          Zeng, K., Deng, Y., Ming, J. & Deng, L. 2010. Induction
            of disease resistance and ROS metabolism in navel orange by
              chitosan. Scientia Horti. 126: 223-228.
  
          Zhang, Y., Zhang, M. & Yang, H. 2015. Postharvest
            chitosan-salicylic acid application alleviates
              chilling injury and preserves cucumber fruit quality during cold storage. Food Chem. 174: 558-563.
  
          Zhang, Z., Nakano, K. & Maezawa, S. 2009. Comparison of the
            antioxidant enzymes of broccoli after cold or heat shock treatment at different storage temperatures. Postharvest Biol.
              Technol. 54: 101-105.
  
          
             
          
          
             
          
              *Pengarang untuk surat-menyurat: 
                azhane_ahmad@yahoo.com.my