Sains Malaysiana 47(2)(2018): 295-302
              
          
              http://dx.doi.org/10.17576/jsm-2018-4702-11  
          
             
          
          Identification of Drought Tolerant Maize Genotypes and Seedling
            based Morpho-Physiological Selection Indices for Crop Improvement
            
          
              (Pengenalpastian Genotip Jagung yang Tahan Kemarau dan Indeks 
                Pemilihan Morfo-Fisiologi berasaskan Anak Benih untuk Pembaikan 
                Tanaman)  
          
             
          
              Fahad Masoud Wattoo1, Rashid Mehmood Rana1, 
                Sajid Fiaz2*, Syed Adeel Zafar3, Mehmood 
                Ali Noor4, Hafiz Mumtaz Hassan5, Muhammad 
                Husnain Bhatti6, Shoaib ur Rehman4, Galal 
                Bakr Anis7 & Rai Muhammad Amir8  
                
          
             
          
          1Department of Plant Breeding &
            Genetics, PMAS-Arid Agriculture University, Rawalpindi
            
          
          Pakistan
            
          
          
             
          
          2State Key Laboratory of Rice Biology, China
            National Rice Research Institute, Hangzhou 310006, China
            
          
          
             
          
          3National Key Facility of Crop Gene
            Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy
            of Agricultural Sciences, Beijing 100081, China
            
          
          
             
          
          4Institute of Crop Science, Chinese
            Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology,
            Ministry of Agriculture, Beijing 100081, China
            
          
          
             
          
          5Nuclear Institute for Agriculture and
            Biology, Jhang Rd, Faisalabad, Pakistan
            
          
          
             
          
          6Ayub Agriculture Research Institute, Jhang
            Rd, Faisalabad, Pakistan
            
          
          
             
          
          7Field Crop Research Institute, Agriculture
            Research Centre, Egypt
            
          
          
             
          
          8Institute of Food and Nutritional
            Sciences, PMAS-Arid Agriculture University Rawalpindi
            
          
          Pakistan
            
          
          
             
          
              Diserahkan: 28 Mei 2017/Diterima: 14 Ogos 2017  
          
             
          
          ABSTRACT
            
          
          
             
          
          Maize is an imperative
            grain crop used as a staple food in several countries around the world. Water
            deficiency is a serious problem limiting its growing area and production. Identification
            of drought tolerant maize germplasm is comparatively easy and sustainable
            approach to combat this issue. Present research was conducted to evaluate 50
            maize genotypes for drought tolerance at early growth stage. Drought tolerance
            was assessed on the basis of several morphological and physiological
            parameters. Analysis of variance showed significant variation among the tested
              maize genotypes for recorded parameters. Principal component
            analysis revealed important morpho-physiological traits that were playing key
            role in drought tolerance. Correlation studies depicted significant positive
            correlation among the attributes such as fresh shoot length (FSL), fresh root
            length (FRL), dry shoot weight (DSW), dry root weight (DRW), relative water
            contents (RWC) and total dry matter (TDM) while a strongly negative correlation
            was observed among RWC and excised leaf water loss. Results concluded that the
            parameters fresh shoot weight, fresh root weight, FRL, DRW, TDM, cell membrane
            thermo stability (CMT) and RWC can be useful for rapid screening of maize
            germplasm for drought tolerance at early growth stages. Furthermore, the
            genotypes 6, 16, 18, 40, 45 and 50 can be used as a drought tolerant check in
            breeding programs. Moreover, biplot analysis along with other indices was
            proved to be a useful approach for rapid and cost efficient screening of large
            number of genotypes against drought stress condition.
  
          
          
             
          
          Keywords: Cell membrane
            thermo stability; correlation; drought tolerance; principal component analysis;
            relative water contents
            
          
          
             
          
          ABSTRAK
            
          
              Jagung 
                adalah tanaman bijirin penting yang digunakan sebagai makanan 
                ruji di beberapa negara di seluruh dunia. Kekurangan air adalah 
                masalah serius yang membatasi kawasan dan pengeluarannya yang 
                semakin meningkat. Pengenalpastian 
                germplasma jagung yang tahan kemarau adalah pendekatan yang agak 
                mudah dan mampan untuk memerangi isu ini. Penyelidikan 
                kini dijalankan untuk menilai 50 genotip jagung untuk toleransi 
                kemarau pada peringkat pertumbuhan awal. Ketahanan kemarau dinilai berdasarkan beberapa parameter morfologi 
                dan fisiologi. Analisis varians menunjukkan 
                variasi ketara antara genotip jagung yang diuji untuk parameter 
                yang direkodkan. Analisis komponen 
                utama mendedahkan ciri morfo-fisiologi yang memainkan peranan 
                penting dalam ketahanan kemarau. Kajian korelasi menunjukkan 
                korelasi positif yang signifikan antara ciri seperti panjang pucuk 
                segar (FSL), panjang akar segar (FRL), berat pucuk kering (DSW), 
                berat akar kering (DRW), kandungan air relatif (RWC) dan jumlah 
                bahan kering (TDM) manakala korelasi yang sangat negatif diperhatikan 
                dalam kalangan RWC dan mengurangkan kehilangan air daun. Keputusannya 
                menyimpulkan bahawa parameter pucuk berat baru, berat akar segar, 
                FRL, DRW, TDM, kestabilan thermo membran sel (CMT) dan RWC adalah 
                berguna untuk penapisan pantas germplasma jagung untuk ketahanan 
                kemarau pada peringkat pertumbuhan awal. Selain itu, genotip 6, 16, 18, 40, 45 dan 50 boleh digunakan sebagai 
                pemeriksaan ketahanan kemarau dalam program pembiakan. 
                Selain itu, analisis biplot bersama-sama dengan indeks lain telah 
                terbukti merupakan pendekatan yang berguna untuk penapisan pantas 
                dan cekap kos untuk sejumlah besar 
                genotip terhadap keadaan tekanan kemarau.  
          
             
          
          Kata kunci: Analisis
            komponen utama; kandungan air relatif; kestabilan thermo membran sel; ketahanan
            kemarau; korelasi
            
          
          
             
          
          RUJUKAN
            
          
          
             
          
          
            
            Abbasi, G.H., Ijaz, M., Akhtar, J., Anwar Ul-Haq, M., Jamil,
              M., Ali, S., Ahmad, R. & Khan, H.N. 2016. Profiling of anti-oxidative
              enzymes and lipid peroxidation in leaves of salt tolerant and salt sensitive
              maize hybrids under NaC1 and Cd stress. Sains
                Malaysiana 45(2): 177-184.
              
            
              Ahmadzadeh, A. 1997. Determination of the best drought tolerance 
                index in selected maize 
                (Zea mays L.) lines, 
                MSc. Thesis, Tehran University, Tehran, Iran (Unpublished).  
          Ali, M.A., Niaz, S., Abbas, A., Sabir, W. & Jabran, K.
            2009. Genetic diversity and assessment of drought tolerant sorghum landraces
            based on morph-physiological traits at different growth stages. Plant Omics 2(5): 214-227.
  
          Ali, Q., Ahsan, M., Mustafa, H.S.B. & Hasan, E.U. 2013.
            Studies of genetic variability and correlation among morphological traits of
            maize (Zea mays L.) at seedling
            stage. Albanian Journal of Agricultural
              Sciences 12(3): 405-410.
  
          Ali, Q., Elahi, M., Ahsan, M., Tahir, M.H.N. & Basra,
            S.M.A. 2011. Genetic evaluation of maize (Zea
              mays L.) genotypes at seedling stage under moisture stress. International Journal for Agro Veterinary
                and Medical Sciences 5(2): 184-193.
  
          Ali, Z., Salam, A., Azhar, F.M., Khan, I.A., Khan, A.A.,
            Bahadur, S., Mahmood, T., Ahmad, A. & Trethowan, R. 2012. The response of
            genetically distinct bread wheat genotypes to salinity stress. Plant Breeding 131(6): 707-715.
  
          Amini, Z., Khodambashi, M. & Houshmand, S. 2013.
            Correlation and path coefficient analysis of seed yield related traits in
            maize. International Journal of
              Agriculture and Crop Sciences 5(19): 2217-2220.
  
          Gonzales, A. & Ayerbe, L. 2011. Response of coleoptiles
            to water deficit: Growth, turgor maintenance and osmotic adjustment in barley
            plants (Hordeum vulgare L.). Agricultural Sciences 2(3): 159-166.
  
          Bayoumi, T.Y., Eid, M.H. & Metwali,
            E.M. 2008. Application of physiological and biochemical indices as a screening
            technique for drought tolerance in wheat genotypes. African Journal of Biotechnology 7(14): 2341-2352.
  
          Brown-Guedira, G.L., Thompson, J.A., Nelson,
            R.L. & Warburton, M.L. 2000. Evaluation of genetic diversity of soybean
            introductions and North American ancestors using RAPD and SSR markers. Crop Science 40(3): 815-823.
  
          Chohan, M.S.M., Saleem, M., Ahsan, M.
  & Asghar, M. 2012. Genetic analysis of water stress tolerance and various
            morpho-physiological traits in (Zea mays L.) using graphical approach. Pakistan
              Journal of Nutrition 11(5): 489-500.
  
          Clarke, J.M. & Townley-Smith, T.F.
            1986. Heritability and relationship to yield of excised-leaf water retention in
            durum wheat. Crop Science 26(2):
            289-292.
  
          De La Cruz, M., Roberto, L.R., Adrián, E.
  & Maestre, F.T. 2008. Where do seedlings go? A spatio‐temporal
    analysis of seedling mortality in a semi‐arid
      gypsophyte. Ecography 31(6): 720-730.
  
          Egilla, J.N., Davies, F.T. & Boutton.
            T.W. 2005. Drought stress influences leaf water content, photosynthesis, and
            water-use efficiency of Hibiscus rosa-sinensis at three potassium
            concentrations. Photosynthetica 43(1): 135-140.
  
          Frova, C., Krajewski, P., Fonzo, N.D.,
            Villa, M. & Sari-Gorla, M. 1999. Genetic analysis of drought tolerance in
            maize by molecular markers I. Yield components. Theoretical and Applied Genetics 99(1-2): 280-288.
  
          Garc?́a-Mata, C. & Lamattina, L.
            2001. Nitric oxide induces stomatal closure and enhances the adaptive plant
            responses against drought stress. Plant
              Physiology 126(3): 1196-1204.
  
          Guttieri, M., Bowen, D., Dorsch, J.A.,
            Raboy, V. & Souza, E. 2004. Identification and characterization of a low
            phytic acid wheat. Crop Science 44(2): 418-424.
  
          Ibrahim, A.M.H. & Quick, J.S. 2001.
            Genetic control of high temperature tolerance in wheat as measured by membrane
            thermal stability. Crop Science 41(5): 1405-1407.
  
          Jaleel, C.A., Manivannan, P., Lakshmanan,
            G.M.A., Gomathinayagam, M. & Panneerselvam. R. 2008. Alterations in
            morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water
            deficits. Colloids and Surfaces B:
              Biointerfaces 61(2): 298-303.
  
          Javed, I. 2012. Genetics of some potential
            parameters in Zea mays L. under normal
            and moisture deficit conditions, University of Agriculture, Faisalabad
            (Unpublished).
  
          Kashiwagi, J., Krishnamurthy, L.,
            Upadhyaya, H.D., Krishna, H., Chandra, S., Vadez, V. & Serraj, R. 2005.
            Genetic variability of drought-avoidance root traits in the mini-core germplasm
            collection of chickpea (Cicer arietinum L.). Euphytica 146(3): 213-222.
  
          Khan, N.H., Ahsan, M., Saleem, M. &
            Ali, A. 2014. Genetic association among various morpho-physiological traits of Zea mays under drought condition. Life Science Journal 11: 112-122.
  
          Khodarahmpour, Z. & Hamidi, J. 2011.
            Evaluation of drought tolerance in different growth stages of maize (Zea mays L.) inbred lines using
            tolerance indices. African Journal of
              Biotechnology 10(62): 13482-13490.
  
          Kirigwi, F.M., Ginkel, M.V., Trethowan,
            R., Sears, R.G., Rajaram, S. & Paulsen, G.M. 2004. Evaluation of selection
            strategies for wheat adaptation across water regimes. Euphytica 135(3): 361-371.
  
          Kitajima, K. & Fenner, M. 2000.
            Ecology of seedling regeneration. In Seeds,
              the Ecology of Regeneration in Plant Communities, edited by Fenner, M.
            Oxforshire: CABI. pp. 331-359.
  
          Meeks, M., Murray, S.C., Hague, S. &
            Hays, D. 2013. Measuring maize seedling drought response in search of tolerant
            germplasm. Agronomy 3(1): 135-147.
  
          Mehdi, S.S., Ahmad, N. & Ahsan, M.
            2001. Evaluation of S1 maize (Zea mays L.) families at seedling stage under drought conditions. Online Journal of Biological Sciences 1: 4-6.
  
          Mustafa, H.S.B., Ahsan, M., Aslam, M.,
            Ali, Q., Bibi, T., Hasan, E. & Mehmood, T. 2013. Genetic variability and
            traits association in maize (Zea mays L.) accessions under drought stress. Journal
              of Agricultural Research 51(3): 231-238.
  
          Neelima, S. & Reddy, V.C. 2008.
            Genetic parameters of yield and fibre quality traits in American cotton (Gossypium hirsutum L.). Indian Journal of Agricultural Research 42(1): 67-70.
  
          Nour, A.E.M. & Weibel, D.E. 1978.
            Evaluation of root characteristics in grain sorghum. Agronomy Journal 70(2): 217-218.
  
          Nzuve, F., Githiri, S., Mukunya, D.M.
  & Gethi, J. 2014. Genetic variability and correlation studies of grain
            yield and related agronomic traits in maize. Journal of Agricultural Science 6(9): 166-176.
  
          Qayyum, A., Razzaq, A., Ahmad, M. &
            Jenks, M.A. 2011. Water stress causes differential effects on germination
            indices, total soluble sugar and proline content in wheat (Triticum aestivum L.) genotypes. African Journal of Biotechnology 10(64): 14038-14045.
  
          Rezaeieh, K.A. & Eivazi, A. 2011.
            Evaluation of morphological characteristics in five Persian maize (Zea mays L.) under drought stress. African Journal of Agricultural Research 6(18): 4409-4411.
  
          Seghatoleslami, M.J., Kafi, M. &
            Majidi, E. 2008. Effect of drought stress at different growth stages on yield
            and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pakistan Journal of Botany 40(4): 1427-1432.
  
          Shrimali, M. 2001. Studies on
            morphological parameters contributing to drought tolerance in cereals. India New Botanist 28(1/4): 91.
  
          Singh, B.D. & Singh. B.D. 1999. Plant Breeding: Principles and Methods. New
            Delhi: Kalyani Publishers.
  
          Taiz, L. & Zeiger, E. 2006. Stress
            physiology. In Plant Physiology. 4th
            ed. Massachusetts: Sinauer Associates, Inc.
  
          Thiry, A.A., Dulanto, P.N.C., Reynolds,
            M.P. & Davies, W.J. 2016. How can we improve crop genotypes to increase
            stress resilience and productivity in a future climate? A new crop screening
            method based on productivity and resistance to abiotic stress. Journal of Experimental Botany 67(19):
            5593-5603.
  
          Waqas, M.A., Khan, I., Akhter, M.J.,
            Noor, M.A. & Ashraf, U. 2017. Exogenous application of plant growth
            regulators (PGRs) induces chilling tolerance in short-duration hybrid maize. Environmental Science and Pollution Research
              International 24(12): 11459-11471. doi: 10.1007/s11356-017-8768-0.
  
          Wu, Y. & Cosgrove, D.J. 2000.
            Adaptation of roots to low water potentials by changes in cell wall
            extensibility and cell wall proteins. Journal
              of Experimental Botany 51(350): 1543-1553.
  
          
            
            Zafar, S.A., Hameed,
              A., Khan, A.S. & Ashraf, M. 2017. Heat shock induced
              morpho-physiological response in indica rice (Oryza sativa L.) at early seedling stage. Pakistan Journal of Botany 49(2): 453-463.
  
            
          Zafar, S.A., Shokat, S., Ahmed, H.G.M., Khan, A.,
            Ali, M.Z. & Atif, R.M. 2015. Assessment of salinity tolerance in rice
              using seedling based morpho-physiological indices. Advancement in Life Sciences 2(4): 142-149.
  
          
             
          
          
             
          
          *Pengarang untuk
            surat-menyurat; email: fiazsajid05@yahoo.com