Sains Malaysiana 47(3)(2018): 499–509
http://dx.doi.org/10.17576/jsm-2018-4703-09
Transient Expression of an Immunogenic
Envelope Attachment Glycoprotein of Nipah Virus in Nicotiana benthamiana
(Pengekspresan Protein Glikoprotein Virus Nipah
secara Transien dalam Nicotiana benthamiana)
GAN KHAI SWAN, TAN CHON SENG, ROFINA YASMIN OTHMAN
& JENNIFER ANN HARIKRISHNA*
Centre for
Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala
Lumpur, Malaysia
Diserahkan:
23 Mac 2017/Diterima: 13 Oktober 2017
ABSTRACT
The Nipah virus is highly virulent
to swine and humans. The envelope attachment glycoprotein (G) of
Nipah virus plays a key role in viral entry and induction of neutralizing
antibody in mammalian hosts, thus is considered a good candidate
for vaccine development. Plant transient expression systems are
gaining recognition as a viable alternative for the production of
vaccine antigens. In this study, we expressed the Nipah virus G
protein heterologously in Nicotiana benthamiana using
an agroinfiltration approach. The highest expression of recombinant
G protein in N. benthamiana at RNA and protein levels was detected on
day 9 post-infiltration. Western blot analysis demonstrated that
the purified G protein reacted specifically with rabbit anti-Nipah
Virus serum, indicating its potential for vaccine use.
Keywords: Biotechnology; KDEL;
plants; tobacco PR1a; vaccine
ABSTRAK
Virus Nipah adalah virus yang sangat
virulen bagi ternakan khinzir dan manusia. Pelekat sampul sel gliko
protein G virus Nipah memainkan peranan penting dalam kemasukan
virus dan peneutralan antibodi di dalam sel perumah mamalia. Oleh
itu, ia dianggap sebagai satu calon yang baik untuk dijadikan vaksin.
Memandangkan sistem asai transien dalam tumbuhan semakin diberi
perhatian sebagai cara alternatif penghasilan vaksin, protein G
virus Nipah telah diekspres dalam tumbuhan Nicotiana benthamiana
menerusi kaedah agroinfiltrasi di dalam kajian ini. Dalam kajian
ini, pengekspresan RNA dan protein G dalam Nicotiana
benthamiana mencapai tahap maksimum pada hari ke-9 selepas infiltrasi.
Protein G yang ditulenkan menunjukkan tindak balas yang khusus dengan
serum arnab anti-Nipah virus dalam analisis pedapan Western. Penemuan
ini menunjukkan protein rekombinan G virus Nipah berpotensi dijadikan
vaksin.
Kata
kunci: Bioteknologi; KDEL; tembakau PR1-a; tumbuhan; vaksin
RUJUKAN
Agrawal, G.K., Jwa, N.S.
& Rakwal, R. 2000. A novel rice (Oryza sativa L.)
acidic PR1 gene highly responsive to cut, phytohormones,
and protein phosphatase inhibitors. Biochem. Biochemical
and Biophysical Research Communications 274(1): 157-165.
Bossart, K.N., Crameri, G., Dimitrov, A.S., Mungall, B.A., Feng, Y.R. & Patch, J.R., Choudhary, A., Wang, L.F., Eaton, B.T. & Broder, C.C.
2005. Receptor binding, fusion inhibition,
and induction of cross-reactive neutralizing antibodies by a soluble
g glycoprotein of hendra virus. Journal
of Virology 79(11): 6690-6702.
Broder,
C.C. 2012 Henipavirus outbreaks to antivirals:
The current status of potential therapeutics. Curr. Opin. Virol. 2: 176-187.
Broder, C.C., Weir, D.L. & Reid, P.A. 2016. Hendra virus and Nipah virus animal vaccines.
Vaccine 34(30): 3525-3534.
Chen, Q. & Lai, H. 2015. Gene delivery
into plant cells for recombinant protein production. BioMed. Research
International 10: 1-10.
Chua,
K.B., Bellini, W.J., Rota, Harcourt B.H., Tamin,
A., Lam, S.K, Ksiazek, T.G., Rollin, P.E.,
Zaki, S.R., Shieh, W., Goldsmith, C.S., Gubler,
D.J., Roehrig, J.T., Eaton, B., Gould,
A.R., Olson, J., Field, H., Daniels, P., Ling, A.E., Peters, C.J.,
Anderson, L.J. & Mahy, B.W. 2000. Nipah virus: A
recently emergent deadly paramyxovirus. Science 288(5470):
1432-1435.
Chua, K.B., Goh, K.J., Wong K.T., Kamarulzaman, A., Tan, P.S., Ksiazek,
T.G., Zaki, S.R., Paul, G., Lam, S.K.
& Tan, C.T. 1999.
Fatal encephalitis due to Nipah
virus among pig-farmer in Malaysia. The Lancet 354(9186):
1257-1259.
Clayton, B.A., Middleton, D., Arkinstall,
R., Frazer L., Wang, L.F. & Marsh, G.A. 2016. The nature of
exposure drives transmission of Nipah
viruses from Malaysia and Bangladesh in ferrets. PLoS
Negl. Trop. Dis. 10: e0004775.
Daniell,
H., Lee, S.B., Panchal, T. & Wiebe, P.O. 2001. Expression of the native cholera toxin B subunit gene and assembly
as functional oligomers in transgenic tobacco chloroplasts.
J. Mol. Biol 311(5): 1001-1009.
DeBuysscher,
B.L., Scott, D., Marzi, A., Prescott,
J. & Feldmann, H. 2014. Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting
antibodies directed against surface glycoproteins. Vaccine 32(22):
2637-2644.
DeBuysscher,
B.L., Scott, D., Thomas, T., Feldmann,
H. & Prescott, J. 2016.
Peri-exposure
protection against Nipah virus disease
using a single-dose recombinant vesicular stomatitis virus-based
vaccine. Vaccines 1: 16002.
Eaton, B.T., Broder, C.C., Middleton, D. & Wang,
L.F. 2006.
Hendra and Nipah viruses: Different and
dangerous. Nature Rev. Microbiol. 4(1):
23-35.
Eshaghi,
M., Tan, W.S., Chin, W.K. & Yusoff, K. 2005. Purification of
the extra-cellular domain of nipah virus
glycoprotein produced in Escherichia
coli and possible application in diagnosis. Journal of Biotechnology
116(3): 221-226.
Faye, L., Boulaflous, A.,
Benchabane, M., Gomord, V. &
Michaud, D. 2005.
Protein modifications in the plant secretory pathway: Current status
and practical implications in molecular pharming. Vaccine 23(15):
1770-1778.
Fischer, R., Stoger, E.,
Schillberg, S., Christou, P. & Twyman,
R.M. 2004.
Plant-based production of biopharmaceuticals.
Current Opinion in Plant Biology 7(2): 152-158.
Gan,
G.S., Tan, C.S., Othman, R.Y. & Harikrishna,
J.A. 2015.
Glucose and low temperature enhanced plasmid stability for increasing
expression of Nipah virus glycoprotein
in Escherichia coli. Research Journal of Biotechnology 10(9):
1-10.
Geisbert,
T.W., Feldmann, H. & Broder, C.C.
2012. Animal challenge
models of Henipavirus infection and pathogenesis.
Henipavirus 10: 153-177.
Gomord,
V., Sourroulle, C., Fitchette,
A.C., Bardor, M., Pagny,
S. & Lerouge, P. & Faye, L. 2004. Production and
glycosylation of plant-made pharmaceuticals: The antibodies as a
challenge. Plant Biotechnology Journal 2(1): 83-100.
Halpin, K., Hyatt, A.D.,
Fogarty, R., Middleton, D., Bingham, J., Epstein, J.H., Rahman,
S.A, Hughes, T., Smith, C., Field, H.E. &
Daszak, P. 2011. Pteropid bats are
confirmed as the reservoir hosts of henipaviruses:
A comprehensive experimental study of virus transmission. The
American Journal of Tropical Medicine and Hygiene 85(5): 946-951
Harcourt,
B.H., Tamin, A., Ksiazek,
T.G., Rollin P.E., Anderson L.J. & Bellini W.J. & Rota,
P.A. 2000. Molecular characterization of Nipah virus,
a newly emergent paramyxovirus. Virology 271(2): 334-349.
Herriman,
R. 2015 Bangladesh reports nine Nipah
virus cases to date in 2015. Outbreak News
Today. Retrieved from http:// outbreaknewstoday.com/bangladesh-reports-nine-nipah-virus-cases-to-date-in-2015/.
Islam,
M.S., Sazzad, H.M., Satter,
S.M., Sultana, S., Hossain, M.J. & Hasan, M., Islam, M.S., Sazzad, H.M., Satter, S.M., Sultana,
S., Hossain, M.J., Hasan, M., Rahman, M., Campbell, S., Cannon,
D.L., Ströher, U. & Daszak, P. 2016.
Nipah virus transmission from bats to
humans associated with drinking traditional liquor made from date
palm sap, Bangladesh, 2011-2014. Emerging Infectious
Diseases 22(4): 664-670.
Johansen, L.K. & Carrington, J.C. 2011. Silencing on the spot. Induction and suppression
of RNA silencing in the Agrobacterium-mediated transient expression
system. Plant Physiology 126(3): 930-938.
Kalthoff,
D., Giritch, A., Geisler, K., Bettmann,
U. & Klimyuk, V. 2010. Immunization with
plant-expressed hemagglutinin protects chickens from lethal highly
pathogenic avian influenza virus H5N1 challenge infection. Journal of Virology
84(22): 12002-12010.
Kanagarajan,
S., Tolf, C., Lundgren, A., Waldenstrom,
J. & Brodelius, P.E. 2013. Transient expression of Hemagglutinin antigen from low pathogenic
avian influenza A (H7N7) in Nicotiana benthamina. Plos
One 7: e33010.
Kapila,
J., De Rycke, R., Van, Montagu, M. &
Angenon, G. 1997. An Agrobacterium-mediated
transient gene expression system for intact leaves. Plant
Science 122(1): 101-108.
Lindbo, J.A. 2007. TRBO:
A high-efficiency Tobacco mosaic virus RNA-based overexpression
vector. Plant Physiology 145(4): 1232-1240.
Liu, Q., Bradel-Tretheway,
B., Monreal, A.I., Saludes,
J.P., Lu, X., Nicola, X.V. & Aguilar, H.C. 2015. Nipah virus attachment Glycoprotein stalk C-terminal region
links receptor binding to fusion triggering. Journal of Virology
80(3): 1839-1850.
Liu, Y.J., Xiao, C., Wang, G.P., Xuan, H. & Tu, C.C. 2007. Expression of Nipah virus structural proteins F1 and G and preparation of
hyperimmune antisera against two proteins.
Acta Microbiologica Sinica 47(3): 465-470.
Lo,
M.K., Bird, B.H., Chattopadhyay, A., Drew, C.P., Martin, B.A., Coleman
J.D. Rose, J.K., Nichol, S.T. & Spiropoulou,
C.F. 2014. Single-dose replication-defective VSV-based Nipah
virus vaccines provide protection from lethal challenge in Syrian
hamsters. Antiviral Research 101: 26-29.
Lomonosoff, G.P. 2015. Rapid
high-yield expression of a candidate influenza vaccine based on
the ectodomain of M2 protein linked to flagellin
in plants using viral vectors. BMC Biotechnology 15(1): 42.
Luby,
S.P., Gurley, E.S. & Hossain, M.J. 2012. Transmission of Human Infection with Nipah
Virus. In Improving
Food Safety Through a One Health Approach, Workshop Summary.
Institute of Medicine (US): National
Academies Press. p. A11.
Luby, S.P., Hossain,
M.J., Gurley, E.S., Ahmed, B.N., Banu,
S., Khan, S.U., Homaira, N., Rota, P.A.,
Rollin, P.E., Comer, J.A., Kenah, E.,
Ksiazek, T.G. & Rahman, M. 2009. Recurrent
zoonotic transmission of Nipah virus into
humans, Bangladesh, 2001-2007. Emerging
Infectious Diseases 15(8): 1229-1235.
Ma, S., Huang, Y., Davis, A., Yin, Z., Mi, Q., Menassa, R., Brandle, E. & Jevnikar, A.M.
2005.
Production of biologically active human interleukin-4
in trasngenic tobacco and potato. Plant Biotechnology
Journal 3(3): 309-318.
Mason, H.S., Lam, D.M. & Arntzen,
C.J. 1992.
Expression of hepatitis B surface antigen in transgenic
plants. Proceedings of the National Academy of Sciences
89(24): 11745-11749.
Mayo,
M.A. 2002. A summary of taxonomic changes recently
approved by ICTV. Archives of Virology 147(8): 1655-1656.
McEachern, J.A., Bingham,
J., Crameri, G., Green, D.J., Hancock,
T.J., Middleton D., Feng, Y.R., Broder, C.C., Wang, L.F. & Bossart,
K.N. 2008. A recombinant subunit vaccine formulation protects against
lethal Nipah virus challenge in cats. Vaccine 26(31): 3842-3852.
Mett, V., Musiychuk, K.,
Bi, H., Farrance, C.E. & Horsey, A.
2008. A plant-produced
influenza subunit vaccine protects ferrets against virus challenge.
Influenza and Other Respirotory Viruses
2(1): 33-40.
Mire, C.E., Versteeg, K.M.,
Cross, R.W., Agans, K.N., Fenton, K.A.,
Whitt, M.A. & Geisbert, T.W. 2013. Single injection
recombinant vesicular stomatitis virus vaccines protect ferrets
against lethal Nipah virus disease. Virology
Journal 10(1): 353.
Musiychuk,
K., Stephenson, N., Bi, H., Farrance,
C.E., Orozovic, G., Brodelius, M., Brodelius, P., Horsey, A., Ugulava,
N., Shamloul, A.M., Mett, V., Rabindran,
S., Streatfield, S.J. & Yusibov, V.
2007. A launch vector for the production of vaccine antigens in plants.
Influenza and Other Respiratory Viruses 1(1): 19-25.
Nochi,
T., Takagi, H., Yuki, Y., Yang, L., Masumura,
T., Mejima, M., Nakanishi, U., Matsumura, A., Uozumi, A., Hiroi, T., Morita, S.,
Tanaka, K., Takaiwa, F. & Kiyono,
H. 2007.
Rice-based mucosal vaccine as a global strategy
for cold-chain-and needle-free vaccination. Proceedings
of the National Academy of Sciences 104(26): 10986-10991.
Nuttall, J., Vine, N., Hadlington,
J.L., Drake, P., Frigerio, L. & Ma,
J.K. 2002. ER-resident chaperone interactions with recombinant antibodies in
transgenic plants. The FEBS Journal 269(24): 6042-6051.
Pallister,
J.A., Klein, R., Arkinstall, R., Haining,
J., Long, F., White, J.R., Payne, J., Feng, Y.R., Wang, L.F., Broder,
C.C. & Middleton, D. 2013. Vaccination of ferrets with a recombinant
G-glycoprotein subunit vaccine provides protection against nipah
virus disease for over 12 months. Virology Journal 10(1):
237.
Parashar, U.D., Sunn, L.M., Ong, F., Mounts, A.W., Arif, W.T., Ksiazek, T.G., Kamaluddin, M.A.,
Mustafa, A.N., Kaur, H., Ding, L.M., Othman, G., Radzi,
H.M., Kitsutani, P.T., Stockton, P.C.,
Arokiasamy, J., Gary, H.E.J. & Anderson, L.J. 2000. Case-control
study of risk factors for human infection with a novel zoonotic
paramyxovirus, Nipah virus, during
a 1998–1999 outbreak of severe encephalitis in Malaysia.
The Journal of Infectious Diseases 181(5): 1755-1759.
Paton,
N.I., Leo, Y.S., Zaki, S.R., Auchus,
A.P., Lee, K.E., Ling, A.E., Chew, S.K, Ang,
B., Rollin, P.E., Umapathi, T., Sng,
I., Lee, C.C., Lim, E. & Ksiazek,
T.G. 1999. Outbreak of Nipah virus infection among
abattoir workers in Singapore. The Lancet 354(9186):
1253-1257.
Peng, R.H., Yao, Q.H., Xiong,
A.S., Cheng, Z.M. & Li, Y. 2006. Codon-modifications and an endosplasmic recticulum-targeting
sequence additively enhance expression of an Aspergillus phytase
gene in transgenic canola. Plant Cell Reports 25(2): 124-132.
Petruccelli,
S., Otegui, M.S., Lareu,
F., Tran Dihn O., Fitchette,
A.C., Circosta, A., Rumbo,
M., Bardor, M., Carcamo,
R., Gomord, V. & Beachy, R.N. 2006. A KDEL-tagged
monoclonal antobody is efficiently retained
in the endoplasmic reticulum in leaves but is both partially secreted
and sorted to protein storage vacuoles in seeds. Plant Biotechnology
Journal 4(5): 511-527.
Petukhova, N.V., Gasanova, T.V., Stepanova, L.A.,
Rusova, O.A., Patopchuk M.V., Korotkov, A.V. Skurat, E.V,, Tsybalova, L.M., Kiselev, O.I.,
Ivanov, P.A. & Atabekov, J.G. 2013.
Immunogenicity and protection efficacy of candidate universal influenza
Ananovaccine produced in plants by Tabacco
mosaic virus-based vectors. Current Pharmaceutical
Design. 19(31): 5587-5600.
Pogrebnyak,
N., Golovkin, M., Andrianov,
V., Spitsin, S., Smirnov, Y., Egolf,
E. & Koprowski, H. 2005. Severe acute respiratory
syndrome (SARS) S protein production in plants: Development of recombinant
vaccine. Proceedings of the National Academy of the United States
of America 102(25): 9062-9067.
Prescott, J., DeBuysscher,
B.L., Feldmann, F., Gardner, D.J., Haddock,
E., Martellaro, C., Scott. D. & Feldmann, H. 2015. Single-dose live-attenuated vesicular
stomatitis virus-based vaccine protects
African green monkeys from Nipah virus
disease. Vaccine 33(24): 2823-2829.
Pua, T.L., Loh, H.S., Massawe,
F., Tan, C.S. & Omar, A.R. 2012. Expression
of insoluble influenza neuraminidase Type 1(NA1) protein in tobacco.
Journal of Tropical Life Science 2(3): 62-71.
Qiu, X.,
Wong, G., Audet, J., Bello, A., Femando, L., Alimonti, J.B., Fausther-Bovendo, H., Wei, H., Aviles, J., Hiatt, E., Johnson,
A., Morton, J., Swope, K., Bohorov, O.,
Bohorova, N., Goodman, C., Kim, D., Pauly,
M.H., Velasco, J., Pettitt, J., Olinger,
G.G., Whaley, K., Xu, B., Strong, J.E. & Zeitlin, L. 2014. Reversion of advanced Ebola virus disease in nonhuman primates with
ZMapp. Nature 514(7520): 47-53.
Roy, G., Weisburg,
S., Rabindran, S. & Yusibov,
V. 2010. A novel two-component tobacco mosaic virus-based
vector system for high-level expression of multiple therapeutic
proteins including a human monoclonal antibody in plants.
Virology 405(1): 93-99.
Rybicki, E.P. 2014. Plant-based
vaccines against viruses. Virology Journal 11(1):
205.
Sainsbury, F., Liu, L. & Lomonossoff, G.P. 2009b. Cowpea mosaic virus-based systems for the expression of antigens and
antibodies in plants. Recombinant Proteins From
Plants: Methods and Protocols 483: 25-39.
Sainsbury, F. & Lomonossoff,
G.P. 2008. Extremely high-evel
and rapid transient protein production in plants without the use
of viral replication. Plant Physiology 148(3): 1212-1218.
Sainsbury, F., Thuenemann,
E.C. & Lomonossoff G.P. 2009a. pEAQ: Versatile expression vectors
for easy and quick transient expression of heterologous proteins
in plants. Journal Plant Biotechnology 7(7): 682-693.
Satterfield, B.A., Dawes, B.A. & Milligan,
G.N. 2016. Status of vaccine research
and development of vaccines for Nipah
virus. Vaccine 34(26): 2971-2975.
Scholthof, H.B., Morris, T.J. & Jackson, A.O. 1993. The
capsid protein gene of tomato bushy stunt virus is dispensable for
systemic movement and can be replaced for localized expression of
foreign genes. Molecular Plant-Microbe. Interactions Journal 6(3): 309-322.
Schouten, A., Roosien, J., Van Engelen, F.A., de Jong, G.A., Borst-Vrenssen,
A.W., Zilverentant, J.F., Bosch, D., Stiekema, W.J., Gommers, F.J., Schots, A. & Bakker, J. 1996. The C-terminal KDEL sequence
increases the expression level of a single-chain antibody designed
to be targeted to both the cytosol and the secretory pathway in
transgenic tobacco. Plant Molecular Biology 30(4): 781-791.
Sheludko, Y.V., Sindarovska, Y.R., Gerasymenko, I.M., Bannikova, M.A.
& Kuchuk, N.V. 2007. Comparison of several Nicotiana species
as hosts for high-scale Agrobacterium-mediated transient expression.
Biotechnology Bioengeneering 96(3):
608-614.
Shoji, Y., Chichester, J.A., Bi H., Musiychuk, K. & de la Rosa, P. 2008. Plant-expressed
HA as a seasonal influenza vaccine candidate. Vaccine
26: 2930-2934.
Shoji, Y., Chichester,
J.A., Jones, M., Manceva, S.D. & Damon,
E. 2011. Plant-based rapid production of recombinant subunit hemagglutinin
vaccines targeting H1N1 and H5N1 influenza. Hum. Vaccines
7(sup1): 41-50.
Stoger, E.,
Sack, M., Perrin, Y., Vaquero, C., Torres, E., Twyman,
R.M., Christou, P. & Fisher, R. 2002. Practical
considerations for pharmaceutical antibody production in different
crop systems. Molecular Breeding 9(3): 149-158.
Sun, Q.Y., Ding, L.W., Lomonossoff, G.P.,
Sun Y.B., Luo M., Li, C.Q. Jiang, L. & Xu, Z.F. 2011. Improved expression and purification of recombinant human serum albumin
from transgenic tobacco suspension culture. Journal of
Biotechnology 155(2): 164-172.
Voinnet, O.,
Rivas, S., Mestre, P. & Baulcombe,
D. 2003. An enhanced transient expression system
in plants based on suppression of gene silencing by the p19 protein
of tomato bushy stunt virus. The Plant Journal 33(5):
949-956.
Wang, L.F., Yu, M., Hansson, E., Pritchard,
L.I., Shiell, B., Michalski, W.P. &
Eaton, B.P. 2000. The exceptionally large genome of Hendra virus: Support for creation
of a new genus within the family Paramyxoviridae.
Journal of Virology 74(21): 9972-9979.
Weigel, D. & Glazebrook, J. 2006. Transformation of agrobacterium using the freze-thaw
method. Cold Spring Harbor Protocols doi: 10.1101/pdb.prot4666.
Weingart, H.M.,
Berhane, Y., Caswell, J.L., Loosmore,
S., Audonnet J.C., Roth, J.A. & Czub, M. 2006. Recombinant Nipah
virus vaccines protect pigs against challenge. Journal of Virology
80(16): 7929-7938.
Wigdorovitz, A., Carrillo, C., Samtos, M., Trono, K. & Peralta, A. 1999. Induction of a protective antibody response to foot and mouth disease
virus in mice following oral or parenteral immunization with alfalfa
transgenic plants expressing the viral structural protein VP1.
Virology 255(2): 347-353.
Wong, K.T. & Ong, K.C. 2011. Pathology of acute henipavirus infection
in humans and animals. Patholog. Res. Int. 2011: Article ID. 567248.
Wroblewski, T., Tomczak, A. & Michelmore R. 2005. Optimization
of Agrobacterium-mediated transient assays of gene expression in
lettuce, tomato and Arabidopsis. Plant Biotechnology Journal
3(2): 259-273.
Wydro, M.,
Kozubek, E. & Lehmann, P. 2006. Optimization of transient Agrobacterium-mediated gene expression system
in leaves of Nicotiana benthamiana.
Acta. Biochimica Polonica 53(2): 289-298.
Yang, J., Barr, L.A., Fahnestock, S.R. & Liu, Z.B. 2005. High yield recombinant silk-like protein production in transgenic
plants through protein targeting. Transgenic Research
14(3): 313-324.
Yoneda, M., Georges-Courbot, M.C., Ikeda, F.,
Ishii, M. & Nagata, N. 2013. Recombinant Measles virus
vaccine expressing the Nipah virus glycoprotein
protects against lethal Nipah virus challenge.
PloS ONE 8: e58414.
Yusibov, V., Hooper, D.G., Spitsin, S., Fleysh, N. & Kean, R.B. 2002. Expression in plants and immunogenicity of plant virus-based experimental
rabies vaccine. Vaccine 20: 3155-3164.
Zhang, C., Bradshaw, J.D., Whitham, S.A. & Hill, J.H. 2010. The
development of an efficient multipurpose bean pod mottle virus viral
vector set for foreign gene expression and RNA silencing. Plant
Physiology 153(1): 52-65.
*Pengarang untuk surat-menyurat;
email: jennihari@um.edu.my
|