Sains Malaysiana 47(4)(2018): 699-705

http://dx.doi.org/10.17576/jsm-2018-4704-07

 

The Effect of Alkaline Treatment on the Mechanical Properties of Treated Sugar Palm Yarn Fibre Reinforced Unsaturated Polyester Composites Reinforced with Different Fibre Loadings of Sugar Palm Fibre

(Kesan Rawatan Alkali terhadap Sifat Mekanikal Serabut Kabung Yarn Terawat Diperkuat dengan Komposit Poliester tak Tepu Diperkuat dengan Pembebanan Berbeza Serabut Kabung)

 

MOHD NURAZZI NORIZAN1, KHALINA ABDAN1,2*, MOHD SAPUAN SALIT1,2 & RAHMAH MOHAMED3

 

1Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 27 Februari 2015/Diterima: 15 Jun 2017

 

ABSTRACT

 

The aim of this paper was to describe the effects of treated sugar palm yarn fibre loading on the mechanical properties of reinforced unsaturated polyester composites. Composites with varying fibre loads (10, 20, 30, 40 and 50 wt. %) were prepared using a hand-layup process. The composites were tested for tensile, flexural and impact strength according to ASTM D3930, ASTM D790 and ASTM D256 standards, respectively. The results showed that an increase in fibre loading of up to 30 wt. % increased tensile strength (31.27 MPa), tensile modulus (4.83 GPa), flexural strength (58.14 MPa) and modulus (4.48 GPa). Maximum loading can be attained at 40 wt. % of fibre loading for impact strength (38 kJ/m2). The effectiveness of stress transfer mechanism through the fibre-matrix interaction, coupled with the optimization of fibre loading in resisting fracture and failure, boosts the overall mechanical performance of sugar palm composite.

 

Keywords: Alkaline treatment; fibre loadings; mechanical properties; sugar palm; unsaturated polyester

 

ABSTRAK

 

Matlamat kajian ini adalah untuk menerangkan kesan muatan serabut kabung terawat terhadap sifat mekanikal komposit poliester tak tepu diperkuat. Komposit dengan muatan serabut yang berbeza (10, 20, 30, 40 dan 50 % bt.) disediakan menggunakan proses layup tangan. Komposit ini diuji untuk kekuatan tegangan, lenturan dan hentaman mengikut piawai ASTM D3930, ASTM D790 dan ASTM D256. Analisis menunjukkan dengan peningkatan muatan serabut sehingga 30 % bt. akan meningkatkan kekuatan tegangan (31.27 MPa), modulus tegangan (4.83 GPa), kekuatan lenturan (58.14 MPa) dan modulus (4.48 GPa). Muatan maksimum dapat diperoleh pada 40 % bt. muatan serabut dengan kekuatan hentaman (38 kJ/m2).Keberkesanan mekanisme pemindahan tekanan melalui interaksi matriks-serabut, digabungkan dengan pengoptimuman muatan serabut dalam rintangan retakan dan kerosakan, meningkatkan keseluruhan prestasi mekanikal untuk komposit kabung.

 

Kata kunci: Kabung; muatan serabut; poliester tak tepu; rawatan alkali; sifat mekanikal

 

RUJUKAN

 

Abdul Khalil, H.P.S., Hanida, S., Kang, C.W. & Nik Fuaad, N.A. 2007. Agro-hybrid composite: The effects on mechanical and physical properties of oil palm fiber (EFB)/glass hybrid reinforcedpolyester composites. Journal of Reinforced Plastics and Composites 26(2): 203-218.

Aji, I.S., Zainudin, E.S., Khalina, A., Sapuan, S.M. & Khairul, M.D. 2011. Studying the effect of fiber size and fiber loading on the mechanical properties of hybridized kenaf/PALF-reinforced HDPE composite. Journal of Reinforced Plastics and Composites 30(6): 546-553.

Alamri, H. & Low, I.M. 2012. Microstructural, mechanical and thermal characteristics of recycled cellulose fiber-halloysite- epoxy hybrid nanocomposites. Polymer Composite 33(4): 589-600.

Aziz, S.H. & Ansell, M.P. 2004. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 - polyester resin matrix. Composites Science and Technology 64(9): 1219-1230.

Bachtiar, D., Sapuan, S.M. & Hamdan, M.M. 2010. Flexural properties of alkaline treated sugar palm fibre reinforced epoxy composites. International Journal of Automotive and Mechanical Engineering 1: 79-90.

Bachtiar, D., Sapuan, S.M. & Hamdan, M.M. 2008. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials & Design 29(7): 1285-1290.

Bismarck, A., Mishra, S. &  Lampke, T.  2005. Plant fibers as reinforcement for green composites. Natural Fibers, Biopolymers and Biocomposites 10: 9780203508206.

Bledzki, A.K., Jaszkiewicz, A., Murr, M., Sperber, V.E., Lützkendorf, R. & Reußmann, T. 2008. Processing techniques for natural-and wood-fibre composites. Properties and Performance of Natural-Fibre Composites. Cambridge: Woodhead. pp. 163-192.

Garcia, J.C., Dupeyre, D. & Vignon, M.R. 1998. Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass and Bioenergy 14(3): 251-260.

Hatem, A. & Meng, L.I. 2012. Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polymer Testing 31(5): 620-628.

Ishak, M.R., Sapuan, S.M., Leman, z., Rahman, M.z.A. & Anwar, U.M.K. 2011. Characterization of sugar palm (Arenga pinnata) fibres. Journal of Thermal Analysis and Calorimetry 109(2): 981-989.

Ismail, H., Pasbakhsh, P., Fauzi, M.N.A. & Bakar, A.A. 2008. Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polymer Testing 27(7): 841-850.

Jähn, A., Schröder, M.W., Füting, M., Schenzel, K. & Diepenbrock, W. 2002. Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 58(10): 2271-2279.

Li, X., Tabil, L.G. & Panigrahi, S. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15(1): 25-33.

Mallick, P.K. 2007. Fiber-reinforced Composites: Materials, Manufacturing, and Design, 3rd ed. New York: CRC Press.

Mansor, M.R., Sapuan, S.M., zainudin, E.S., Nuraini, A.A. & Hambali, A. 2013. Stiffness prediction of hybrid kenaf/ glass fiber reinforced polypropylene composites using rule of mixtures (ROM) and rule of hybrid mixtures (RoHM). Journal of Polymer Materials 30(3): 321.

Mishra, S., Mohanty, A.K., Drzal, L.T., Misra, M., Parija, S., Nayak, S.K. & Tripathy, S.S. 2003. Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology 63(10): 1377-1385.

Mohanty, A.K., Misra, M. & Drzal, L.T. 2002. Sustainable bio- composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment 10(1): 19-26.

Mohanty, A.K., Misra, M. & Drzal, L.T. 2001a. Compos Interface. Cross Ref CAS Web of Science® Times Cited 8(313).

Mohanty, A.K., Misra, M. & Drzal, L.T. 2001b. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces 8(5): 313-343.

Nurazzi, N.M., Khalina, A., Sapuan, S.M. & Rahmah, M. 2017a. A review: Fibres, polymer matrices and composites. Pertanika J. Sci. & Technol 25(4): 1085-1102.

Nurazzi, N.M., Khalina, A., Sapuan, S.M. & Rahmah, M. 2017b. Physical, mechanical and thermal properties of sugar palm yarn fibre loading on reinforced unsaturated polyester composites. Journal of Physical Science 28(3): 115-136.

Pang, A.L., Ismail, H. & Bakar, A.A. 2015. Effects of kenaf loading on processability and properties of linear low- density polyethylene/poly (vinyl alcohol)/kenaf composites. BioResources 10(4): 7302-7314.

Rajesh, G., Reena, G., Rama, K.A. & Lakshmipathi, B.R. 2011. Effect of fibre volume fraction on the  tensile strength  of Banana fibre reinforced vinyl ester resin composites. IJAEST- International Journal of Advanced Engineering Sciences and Technologies 1(4): 89-91.

Ramesh, M., Atreya, T.S.A., Aswin, U.S., Eashwar, H. & Deepa, C. 2014. Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Engineering 97: 563-572.

Reddy, N. & Yang, Y. 2005. Biofibers from agricultural byproducts for industrial applications. TRENDS in Biotechnology 23(1): 22-27.

Sahari, J., Sapuan, S.M., zainudin, E.S. & Maleque, M.A. 2013. Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata). Carbohydrate Polymers 92(2): 1711-1716.

Santiagoo, R., Ismail, H. & Hussin, K. 2011. Mechanical properties, water absorption, and swelling behaviour of rice husk powder filled polypropylene/recycled acrylonitrile butadiene rubber (PP/NBRr/RHP) biocomposites using silane as a coupling agent. BioResources 6(4): 3714-3726.

Satyanarayana, K.G., Arizaga, G.G.C. & Wypych, F. 2009. Biodegradable composites based on lignocellulosic fibers - An overview. Progress in Polymer Science 34(9): 982-1021.

Shalwan, A. & Yousif, B.F. 2013. In state of art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Materials & Design 4: 14-24.

Sreekala, M.S., George, J., Kumaran, M.G. & Thomas, S. 2002. The mechanical performance of hybrid phenol- formaldehyde-based composites reinforced with glass and oil palm fibres. Composites Science and Technology 62(3): 339-353.

Sreekumar, P.A., Joseph, K., Unnikrishnan, G. & Thomas, S. 2007. A comparative study on mechanical properties of sisal- leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Composites Science and Technology 67(3): 453-461.

Supri, A.G. & Ismail, H. 2011. The Effect of isophorone diisocyanate-polyhydroxyl groups modified water hyacinth fibers (Eichhornia crassiper) on properties of low density polyethylene/acrylonitrile butadiene styrene (ldpe/abs) composites. Polymer-Plastics Technology and Engineering 50(2): 113-120.

Thomason, J.L. & Vlug, M.A. 1996. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 1. tensile and flexural modulus. Composites   Part A: Applied Science and Manufacturing 27(6): 477-484. Wambua, P., Ivens, J. & Verpoest, I. 2003. Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology 63(9): 1259-1264.

 

*Pengarang untuk surat-menyurat; email: khalina.upm@gmail.com

 

 

 

 

 

 

 

 

sebelumnya