Sains Malaysiana 47(4)(2018): 741-747

http://dx.doi.org/10.17576/jsm-2018-4704-12

 

Structural and Optical Properties Investigation on H-Bonded 1D Helical Self Assembly of 1,1-Dibenzyl-3-(2-Bromobenzoyl)thiourea Molecules for Nonlinear Optical Application

(Kajian Struktur dan Sifat Optik Himpunan Kendiri Molekul 1,1-Dibenzil-3-(2- Bromobenzoil)thiourea dengan Ikatan-H 1D untuk Aplikasi Optik tak Linear)

 

WUN FUI MARK-LEE1, MOHD FAIZAL MD NASIR2 & MOHAMMAD B. KASSIM1*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan:  16 September 2017/Diterima: 11 November 2017

 

 

ABSTRACT

 

A benzoylthiourea molecule namely 1,1-dibenzyl-3-(2-bromobenzoyl)thiourea (2BrBT) was synthesized and characterized by C, H, N and S elemental, mass spectrometry and spectroscopic analyses (infrared, ultraviolet-visible and nuclear magnetic resonance). The 2BrBT compound crystallized in a tetragonal system with the space group P43 and exhibits an acentric crystalline packing due to the presence of intermolecular H-bonding network that forms a self-assembly of 1D helical motif. The asymmetric delocalisation of electrons in the molecule retains its transparency throughout the visible and near-infrared region and hence, essentially propagates the macroscopic helical motif in the solid state. The highest-occupied and lowest-unoccupied molecular orbital (HOMO/LUMO) are mainly found on the thiourea moiety and the benzoylthiourea fragment, respectively and shows an optical bandgap of 3.50 eV. The influence of its geometrical characteristics to the optical properties of 2BrBT is established and discussed in view of nonlinear optical (NLO) application.

 

Keywords: Benzoylthiourea; crystal structure; DFT; nonlinear optical material

 

 

ABSTRAK

 

Molekul benzoiltiourea terbitan 1,1-dibenzil-3-(2-bromobenzoil)tiourea (2BrBT) telah berjaya disintesis dan dicirikan menggunakan teknik analisis unsur C, H, N dan S, spektrometri jisim dan spektroskopi (FT-IR, UV-Vis, 1H dan 13C NMR). Kompaun 2BrBT menghablur dalam sistem tetragonal dengan kumpulan ruang P43 dan menunjukkan padatan hablur yang bersifat asentrik akibat jaringan ikatan-H 1D. Jaringan akibat ikatan hidrogen intermolekul menyebabkan molekul 2BrBT tersusun secara kendiri untuk membentuk motif heliks satu dimensi dalam keadaan fasa pepejal. Penyahsetempatan elektron secara asimetrik di dalam molekul telah mengekalkan sifat lutsinar terhadap radiasi di seluruh kawasan cahaya nampak dan inframerah-dekat serta menggalakkan pembentukan motif makroskopik heliks dalam keadaan pepejal. Pengaruh geometri terhadap sifat optik molekul 2BrBT dibincang dan dihubungkaitkan terhadap aplikasi optik tak linear (NLO).

 

Kata kunci: Bahan optik tak linear; benzoil tiourea; struktur kristal; teori fungsi ketumpatan (DFT)

 

RUJUKAN

Anbarasi, A., Ravi Kumar, S.M., Sundar, G.J.S., Mosses, M.A., Raj, M.P., Prabhakaran, M., Ravisankar & Gunaseelan, R.  2017.  Investigations on synthesis,  growth  and physicochemical properties of semi-organic NLO crystal bis(thiourea) ammonium nitrate for nonlinear frequency conversion. Physica B: Condensed Matter 522: 31-38.

Balaji, J., Prabu, S. & Srinivasan, P. 2016. (E)-N′-(4- chlorobenzylidene)-4-methylbenzenesulfonohydrazide (4cBTH)–Synthesis and characterization of organic NLO crystal. Journal of Crystal Growth 452: 189-197.

Becke, A.D. 1993. Density functional thermochemistry III the role of exact exchange. Journal of Chemical Physics 98: 5648-5652.

Becke, A.D. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 38(6): 3098-3100.

Bosshard, C., Bӧsch, M., Liakatas, I., Jager, M. & Günter, P. 2000. Nonlinear Optical Effects and Materials, edited by Gun, P. Berlin: Springer-Verlag.

cossi, M., Rega, N., Scalmani, G. & Barone, V. 2003. Molecules in solution with the c-PcM solvation model. Journal of Computational Chemistry 24(6): 669-681.

Dalton, L.R., Günter, P., Jazbinsek, M., Kwon, O.P. & Sullivan, P.A. 2015. Organic Electro-optics and Photonics: Molecules, Polymers and Crystals. cambridge: cambridge university Press.

Davidson,  E.R.  &  Feller,  D.  1986.  Basis  set  selection  for molecular calculations. Chemical Reviews 86(4): 681-696.

Fui, M.L.W.,  Hang, N.K., Arifin, K., Minggu, L.J. & Kassim, M.B. 2016. Photocatalytic degradation of bromothymol blue  with  ruthenium(II)  bipyridyl  complex  in  aqueous basic solution. AIP Conference Proceedings 1784(II): 1-6.

Fui, M.L.W., Hang, N.K., Minggu, L.J., umar, A.A. & Kassim, M.B. 2012. Determination of band energy levels for tungsten nitrosyldithiolene. Sains Malaysiana 41(4): 439-444.

Hassan, I.N., Yamin, B.M. & Kassim, M.B.  2008. ethyl 2-(3-benzoyl{\-}thio{\-}ureido)acetate. Acta Crystallographica Section E 64(9): o1727.

Hehre, W.J., Radom, L., Schleyer, P.V.R. & Pople, J.A. 1986. Ab initio molecular orbital theory. Accounts of Chemical Research 9: 399-406.

Irudaya Jothi, A. & Alexander, V. 2017. Organic NLO material with H-bonded 1D helical self-assembly: Synthesis, X-ray crystal structure, DFT calculations, SHG measurements and thermal studies of (5z,6e)-1,10-phenanthroline-5,6-dione dioxime. CrystEngComm. 19(35): 5251-5258.

Jazbinsek, M., Mutter, L. & Gunter, P. 2008. Photonic applications with the organic nonlinear optical crystal DAST. IEEE Journal of Selected Topics in Quantum Electronics 14(5): 1298-1311.

Lee, c., yang, W. & Parr, R. 1988. Development of the colle- Salvetti correlation energy formula into a functional of the electron density. Physical Review B 37(2): 785-789.

Lee, S., Jazbinsek, M., Hauri, c.P. & Kwon, O. 2016. Recent progress in acentric core structures for highly efficient nonlinear optical crystals, their supramolecular interactions and terahertz applications. CrystEngComm. 18: 7180-7203.

Mark-Lee, W.F., Ng, K.H., Minggu, L.J., umar, A.A. & Kassim, M.B. 2013. Amolybdenum dithiolene complex as a potential photosensitiser for photoelectrochemical cells. International Journal of Hydrogen Energy 38(22): 9578-9584.

Mark-Lee, W.F., Rusydi, F., Minggu, L.J. & Kassim, M.B. 2017. Bis(Bipyridyl)-ru(II)-1-benzoyl-3-(pyridine-2-yl)-1H- pyrazole as potential photosensitiser: experimental and density functional theory study. Jurnal Teknologi 79(5-3): 117-123.

Miertuš, S., Scrocco, e. & Tomasi, J. 1981. electrostatic interaction of a solute with a continuum. A direct utilizaion of Ab initio molecular potentials for the prevision of solvent effects. Chemical Physics 55(1): 117-129.

Nasir, M.F.M., Hassan, I.N., Wan Daud, W.R., yamin, B.M. & Kassim, M.B. 2011. 2-Bromo-N-(dibenzylcarbamothioyl)- benzamide. Acta Crystallographica Section E: Structure Reports Online e67: 1218.

Ngah, N., Kassim, M.B. & Yamin, B.M. 2006a. (2S)-1-(Benzoyl- thiocarbamoyl)pyrrolidine-2-carboxylic acid monohydrate. Acta Crystallographica Section E 62(10): 4501-4502.

Ngah, N., Kassim, M.B. & Yamin, B.M. 2006b. 2-(3-Benzoyl- thioureido)propionic acid. Acta Crystallographica Section E 62(1): 381-382.

Purusothaman,  R.,  Rajesh,  P.  &  Ramasamy,  P.  2015.  Growth and characterization of organic NLO material: Clobetasol propionate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 145: 235-238.

Shahriari, E., Mahmood Mat Yunus, W., Talib, Z.A. & Saion, E. 2011. Thermal-induced non-linearity of ag nano-fluid prepared using γ-radiation method. Sains Malaysiana 40(1): 13-15.

Shi, Y., Frattarelli, D., Watanabe, N., Facchetti, A., Cariati, E., Righetto, S., Tordin, E., Zuccaccia, C., Macchioni, A., Wegener, S.L., Stern, C.L., Ratner, M.A. & Marks, T.J. 2015. Ultra-high-response, multiply twisted electro-optic chromophores: Influence of π-system elongation and interplanar torsion on hyperpolarizability. Journal of the American Chemical Society 137(39): 12521-12538.

Tan, S.S., Aisha A. Al-abbasi, Tahir, M.I.M. & Kassim, M.B. 2014. Synthesis, structure and spectroscopic properties of cobalt(III) complexes with 1-benzoyl-(3,3-disubstituted) thiourea. Polyhedron 68: 287-294.

 

*Pengarang untuk surat-menyurat; email: mb_kassim@ukm.edu.my

 

 

 

 

 

 

 

 

sebelumnya