Sains Malaysiana 47(9)(2018): 2195–2204
http://dx.doi.org/10.17576/jsm-2018-4709-30
Variance Targeting Estimator for GJR-GARCH under Model’s Misspecification
(Penganggar Sasaran
Varians untuk
GJR-GARCH di bawah Model Spesifikasi Ralat)
MUHAMMAD
ASMU’I
ABDUL
RAHIM,
SITI
MERIAM
ZAHARI*
& S. SARIFAH RADIAH
SHARIFF
Centre
for Statistical and Decision Science Studies, Faculty of Computer
and Mathematical Sciences, Universiti
Teknologi MARA, 45450 UiTM
Shah Alam, Selangor Darul
Ehsan, Malaysia
Diserahkan: 21 November 2017/Diterima: 17 Mei 2018
ABSTRACT
The application of the
Variance Targeting Estimator (VTE) is considered in GJR-GARCH(1,1) model, under three misspecification scenarios, which
are, model misspecification, initial parameters misspecification
and innovation distribution assumption misspecification. A simulation
study has been performed to evaluate the performance of VTE compared
to commonly used, which is the Quasi Maximum Likelihood Estimator
(QMLE).
The data has been simulated under GJR-GARCH(1,1) process
with initial parameters ω = 0.1, α = 0.05, β = 0.85, γ =
0.1 and an innovation with a true normal distribution. Three
misspecification innovation assumptions, which are normal distribution,
Student-t distribution and the GED distribution
have been used. Meanwhile, for the misspecified
initial parameters, the first initial parameters have been setup
as ω = 1, α = 0, β = 0 and
γ = 0. Furthermore, the application of VTE as an estimator has also been evaluated
under real data sets and three selected indices, which are the
FTSE
Bursa Malaysia Kuala Lumpur Index (FBMKLCI),
the Singapore Straits Time Index (STI) and the Jakarta Composite
Index (JCI). Based on the results, VTE has
performed very well compared to QMLE under both simulation and
the applications of real data sets, which can be considered as
an alternative estimator when performing GARCH model, especially the GJR-GARCH.
Keywords: GJR-GARCH;
QMLE;
variance targeting; volatility
ABSTRAK
Penggunaan Penganggar Sasaran
Varians (VTE) telah
dipertimbangkan terhadap
model GJR-GARCH (1,1) menggunakan tiga senario spesifikasi ralat, iaitu terhadap
model, parameter awalan dan
andaian taburan
hingar. Kajian simulasi telah
dilakukan untuk
menilai prestasi VTE berbanding dengan Penganggar Kebolehjadian Kuasa Maksimum (QMLE).
Data telah disimulasikan
di bawah proses GJR-GARCH (1,1)
dengan parameter awalan,
ω = 0.1, α = 0.05, β = 0.85, γ =
0.1 dan hingar
yang dianggap mempunyai
taburan sebenar yang normal. Tiga andaian telah digunakan
terhadap spesifikasi
ralat bagi taburan
hingar iaitu
taburan normal, taburan t dan taburan GED.
Sementara itu,
spesifikasi ralat bagi parameter awalan telah ditetapkan sebagai ω = 1, α = 0, β =
0 dan γ = 0. Selain itu, penggunaan VTE sebagai penganggar juga telah dinilai menggunakan
data sebenar iaitu
Indeks FTSE Bursa Malaysia Kuala Lumpur (FBMKLCI),
Indeks Masa Selat
Singapura (STI)
dan Indeks
Komposit Jakarta (JCI). Berdasarkan keputusan
analisis, VTE menunjukkan
hasil anggaran
yang lebih baik berbanding
QMLE
bagi kedua-dua
kajian simulasi
dan kajian berasaskan
data sebenar. Oleh
itu, VTE boleh digunakan sebagai penganggar alternatif bagi model GARCH, terutamanya
GJR-GARCH.
Kata kunci: GJR-GARCH;
QMLE; penganggar sasaran varians (VTE);
volatility
RUJUKAN
Abdul Rahim, M.A., Zahari,
S.M. & Shariff,
S.S.R. 2017. Performance of variance targeting
estimator (VTE) under misspecified error
distribution assumption. Pertanika Journal of Science and Technology 25(2):
607-618.
Almeida, D.D. & Hotta, L.K. 2014. The leverage effect and the asymmetry of the error distribution
in GARCH-based models: The case of Brazilian market related series.
Pesquisa Operacional
34(2): 237-250.
Black, F. 1976. Studies in stock price volatility
changes. Proceedings of the 1976 Business.
Bollerslev, T. 1987. A conditionally heteroskedastic
time series model for speculative prices and rates of return.
The Review of Economics and Statistics 16(3): 542-547.
Bollerslev, T. 1986. Generalized autoregressive
conditional heteroskedasticity.
Journal of Econometrics 31(3): 307-327.
Bollerslev, T. & Wooldridge, J.M.
1992.
Quasi-maximum likelihood estimation and inference in dynamic models
with time-varying covariances.
Econometric Reviews 11(2): 143-172.
Boudt, K., Danielsson,
J. & Laurent, S. 2013. Robust forecasting
of dynamic conditional correlation GARCH models. International
Journal of Forecasting 29(2): 244-257.
Boudt, K. & Croux, C. 2010. Robust M-estimation of multivariate
GARCH models. Computational Statistics & Data Analysis
54(11): 2459-2469.
Cappiello, L., Engle, R.F. &
Sheppard, K. 2006.
Asymmetric dynamics in the correlations of global equity and bond
returns. Journal of Financial Econometrics 4(4): 537-572.
Casarin, R., Chang, C.L., Jiménez-Martín,
J.Á., McAleer, M. & Pérez-Amaral, T. 2013. Risk management of risk under the Basel Accord: A Bayesian
approach to forecasting value-at-risk of VIX futures. Mathematics
and Computers in Simulation 94: 183-204.
Dutta, A. 2014. Modelling volatility: Symmetric
or asymmetric Garch models. Journal
of Statistics: Advances in Theory and Applications 12(2):
99-108.
Engle, R.F. 1982. Autoregressive
conditional heteroscedasticity with estimates of the variance
of United Kingdom inflation. Econometrica:
Journal of the Econometric Society 50(4): 987-1007.
Engle, R.F. & Mezrich, J. 1996. GARCH for groups: A round-up of recent developments
in Garch techniques for estimating correlation.
Risk 9(8): 36-40.
Engle, R.F. & Ng, V.K.
1993.
Measuring and testing the impact of news on volatility. The
Journal of Finance 48(5): 1749-1778.
Foucault, T., Hombert, J. & Roşu, I.
2016.
News trading and speed. The Journal of Finance 71(1):
335-382.
Francq, C. & Zakoďan, J.M. 2010. GARCH Models: Structure, Statistical Inference and
Financial Applications. New York: John Wiley & Sons.
Francq, C., Horváth,
L. & Zakoďan, J.M. 2016. Variance targeting estimation
of multivariate GARCH models. Journal of Financial Econometrics
14(2): 353-382.
Francq, C., Horvath, L. &
Zakoďan, J.M. 2009. Merits and drawbacks of variance targeting
in GARCH models. Journal of Financial Econometrics 9(4):
619-656.
Glosten,
L.R., Jagannathan, R. & Runkle,
D.E. 1993. On the relation between the expected
value and the volatility of the nominal excess return on stocks.
The Journal of Finance 48(5): 1779-1801.
Iqbal,
F. 2013. Robust estimation of the simplified
multivariate GARCH model. Empirical Economics 44(3):
1-20.
Islam,
R. & Sultana, N. 2015. Day of the week effect on stock return
and volatility: Evidence from Chittagong stock exchange. European
Journal of Business and Management 7(3): 165-172.
Lee,
S.W. & Hansen, B.E. 1994. Asymptotic theory
for the GARCH (1, 1) quasi-maximum likelihood estimator.
Econometric Theory 10(1): 29-52.
Lim,
C.M. & Sek, S.K. 2013. Comparing the performances of GARCH-type models in capturing the stock
market volatility in Malaysia. Procedia Economics and
Finance 5: 478-487.
Ling,
S. & McAleer, M. 2002. Stationarity and the existence of moments of a family of GARCH processes.
Journal of Econometrics 106(1): 109-117.
Maheu,
J.M. & McCurdy, T.H. 2004. News arrival, jump dynamics, and
volatility components for individual stock returns. The Journal
of Finance 59(2): 755-793.
Mehdian,
S. & Perry, M.J. 2001. The reversal of the Monday effect: New
evidence from US equity markets. Journal of Business Finance
& Accounting 28(7‐8):
1043-1065.
Mukherjee,
K. 2008. M-estimation in GARCH models.
Econometric Theory 24(6): 1530-1553.
Muler,
N. & Yohai, V.J. 2008. Robust
estimates for GARCH models. Journal of Statistical Planning
and Inference 138(10): 2918-2940.
Narayan,
P.K. & Smyth, R. 2005. Cointegration
of stock markets between New Zealand, Australia and the G7 economies:
Searching for co-movement under structural change. Australian
Economic Papers 44(3): 231-247.
Nelson,
D.B. 1991. Conditional heteroskedasticity
in asset returns: A new approach. Econometrica:
Journal of the Econometric Society 59(2): 347-370.
Nelson,
D.B. & Foster, D.P. 1995. Filtering and forecasting with
misspecified ARCH models II: making the right forecast with
the wrong model. Journal of Econometrics 67(2): 303-335.
Newey,
W.K. & Steigerwald, D.G. 1997. Asymptotic bias for quasi-maximum-likelihood estimators in conditional
heteroskedasticity models. Econometrica: Journal of the Econometric Society
65(3): 587-599.
Oh,
S.L., Lau, E., Puah, C.H. & Mansor,
S.A. 2010. Volatility co-movement of Asean-5
equity markets. Journal of Advanced Studies in Finance
1(1): 23-30.
Pedersen,
R.S. & Rahbek, A. 2014. Multivariate
variance targeting in the BEKK–GARCH model. The Econometrics
Journal 17(1): 24-55.
Peng,
L. & Yao, Q. 2003.
Least absolute deviations estimation for ARCH
and GARCH models. Biometrika
90(4): 967-975.
Shamiri, A.
& Isa, Z. 2009.
Modeling and forecasting volatility of the Malaysian stock markets.
Journal of Mathematics and Statistics 5(3): 234-240.
Thalassinos, E.I.,
Ugurlu, E. & Muratoglu,
Y. 2014.
Comparison of forecasting volatility in the
Czech Republic stock market. Applied Economics and Finance
2(1): 11-18.
Tsukuda, Y.,
Shimada, J. & Miyakoshi, T. 2017. Bond market integration in East
Asia: Multivariate GARCH with dynamic conditional correlations
approach. International Review of Economics & Finance 51:
193-213.
Vaynman, I.
& Beare, B.K. 2014. Stable
limit theory for the variance targeting estimator. In Essays
in Honor of Peter CB Phillips, edited by Chang, Y.S., Fomby,
T.B. & Park, J.Y. Bingley: Emerald
Group Publishing Limited. pp. 639-672.
Verhoeven, P.
& McAleer, M. 2004. Fat tails and asymmetry
in financial volatility models. Mathematics and Computers in
Simulation 64(3): 351-361.
Yaya,
O.S., Olubusoye, O.E. & Ojo,
O.O. 2014.
Estimates and forecasts of GARCH model under misspecified
probability distributions: A Monte Carlo simulation approach.
Journal of Modern Applied Statistical Methods 13(2): 479-492.
*Pengarang
untuk surat-menyurat:
mariam@tmsk.uitm.edu.my