Sains Malaysiana 47(9)(2018): 2195–2204 
              http://dx.doi.org/10.17576/jsm-2018-4709-30 
                
               
              Variance Targeting Estimator for GJR-GARCH under Model’s Misspecification
              (Penganggar Sasaran 
                Varians untuk 
                GJR-GARCH di bawah Model Spesifikasi Ralat)
               
              MUHAMMAD 
                ASMU’I 
                ABDUL 
                RAHIM, 
                SITI 
                MERIAM 
                ZAHARI* 
                & S. SARIFAH RADIAH 
                SHARIFF
               
              Centre 
                for Statistical and Decision Science Studies, Faculty of Computer 
                and Mathematical Sciences, Universiti 
                Teknologi MARA, 45450 UiTM 
                Shah Alam, Selangor Darul 
                Ehsan, Malaysia
               
              Diserahkan: 21 November 2017/Diterima: 17 Mei 2018
               
              ABSTRACT
               
              The application of the 
                Variance Targeting Estimator (VTE) is considered in GJR-GARCH(1,1) model, under three misspecification scenarios, which 
                are, model misspecification, initial parameters misspecification 
                and innovation distribution assumption misspecification. A simulation 
                study has been performed to evaluate the performance of VTE compared 
                to commonly used, which is the Quasi Maximum Likelihood Estimator 
                (QMLE). 
                The data has been simulated under GJR-GARCH(1,1) process 
                with initial parameters ω = 0.1, α = 0.05, β = 0.85, γ = 
                0.1 and an innovation with a true normal distribution. Three 
                misspecification innovation assumptions, which are normal distribution, 
                Student-t distribution and the GED distribution 
                have been used. Meanwhile, for the misspecified 
                initial parameters, the first initial parameters have been setup 
                as ω = 1, α = 0, β = 0 and 
                γ = 0. Furthermore, the application of VTE as an estimator has also been evaluated 
                under real data sets and three selected indices, which are the 
                FTSE 
                Bursa Malaysia Kuala Lumpur Index (FBMKLCI), 
                the Singapore Straits Time Index (STI) and the Jakarta Composite 
                Index (JCI). Based on the results, VTE has 
                performed very well compared to QMLE under both simulation and 
                the applications of real data sets, which can be considered as 
                an alternative estimator when performing GARCH model, especially the GJR-GARCH.
               
              Keywords: GJR-GARCH; 
                QMLE; 
                variance targeting; volatility
               
              ABSTRAK
               
              Penggunaan Penganggar Sasaran 
                Varians (VTE) telah 
                dipertimbangkan terhadap 
                model GJR-GARCH (1,1) menggunakan tiga senario spesifikasi ralat, iaitu terhadap 
                model, parameter awalan dan 
                andaian taburan 
                hingar. Kajian simulasi telah 
                dilakukan untuk 
                menilai prestasi VTE berbanding dengan Penganggar Kebolehjadian Kuasa Maksimum (QMLE). 
                Data telah disimulasikan 
                di bawah proses GJR-GARCH (1,1) 
                dengan parameter awalan, 
                ω = 0.1, α = 0.05, β = 0.85, γ = 
                0.1 dan hingar 
                yang dianggap mempunyai 
                taburan sebenar yang normal. Tiga andaian telah digunakan 
                terhadap spesifikasi 
                ralat bagi taburan 
                hingar iaitu 
                taburan normal, taburan t dan taburan GED. 
                Sementara itu, 
                spesifikasi ralat bagi parameter awalan telah ditetapkan sebagai ω = 1, α = 0, β = 
                0 dan γ = 0. Selain itu, penggunaan VTE sebagai penganggar juga telah dinilai menggunakan 
                data sebenar iaitu 
                Indeks FTSE Bursa Malaysia Kuala Lumpur (FBMKLCI), 
                Indeks Masa Selat 
                Singapura (STI) 
                dan Indeks 
                Komposit Jakarta (JCI). Berdasarkan keputusan 
                analisis, VTE menunjukkan 
                hasil anggaran 
                yang lebih baik berbanding 
                QMLE 
                bagi kedua-dua 
                kajian simulasi 
                dan kajian berasaskan 
                data sebenar. Oleh 
                itu, VTE boleh digunakan sebagai penganggar alternatif bagi model GARCH, terutamanya 
                GJR-GARCH.
               
              Kata kunci: GJR-GARCH; 
                QMLE; penganggar sasaran varians (VTE); 
                volatility
             
             
              RUJUKAN
               
              Abdul Rahim, M.A., Zahari, 
                S.M. & Shariff, 
                S.S.R. 2017. Performance of variance targeting 
                estimator (VTE) under misspecified error 
                distribution assumption. Pertanika Journal of Science and Technology 25(2): 
                607-618. 
              Almeida, D.D. & Hotta, L.K. 2014. The leverage effect and the asymmetry of the error distribution 
                in GARCH-based models: The case of Brazilian market related series. 
                Pesquisa Operacional 
                34(2): 237-250. 
              Black, F. 1976. Studies in stock price volatility 
                changes. Proceedings of the 1976 Business. 
                
              Bollerslev, T. 1987. A conditionally heteroskedastic 
                time series model for speculative prices and rates of return. 
                The Review of Economics and Statistics 16(3): 542-547. 
                
              Bollerslev, T. 1986. Generalized autoregressive 
                conditional heteroskedasticity. 
                Journal of Econometrics 31(3): 307-327. 
              Bollerslev, T. & Wooldridge, J.M. 
                1992. 
                Quasi-maximum likelihood estimation and inference in dynamic models 
                with time-varying covariances. 
                Econometric Reviews 11(2): 143-172. 
              Boudt, K., Danielsson, 
                J. & Laurent, S. 2013. Robust forecasting 
                of dynamic conditional correlation GARCH models. International 
                Journal of Forecasting 29(2): 244-257. 
              Boudt, K. & Croux, C. 2010. Robust M-estimation of multivariate 
                GARCH models. Computational Statistics & Data Analysis 
                54(11): 2459-2469. 
              Cappiello, L., Engle, R.F. & 
                Sheppard, K. 2006. 
                Asymmetric dynamics in the correlations of global equity and bond 
                returns. Journal of Financial Econometrics 4(4): 537-572. 
                
              Casarin, R., Chang, C.L., Jiménez-Martín, 
                J.Á., McAleer, M. & Pérez-Amaral, T. 2013. Risk management of risk under the Basel Accord: A Bayesian 
                approach to forecasting value-at-risk of VIX futures. Mathematics 
                and Computers in Simulation 94: 183-204. 
              Dutta, A. 2014. Modelling volatility: Symmetric 
                or asymmetric Garch models. Journal 
                of Statistics: Advances in Theory and Applications 12(2): 
                99-108. 
              Engle, R.F. 1982. Autoregressive 
                conditional heteroscedasticity with estimates of the variance 
                of United Kingdom inflation. Econometrica: 
                Journal of the Econometric Society 50(4): 987-1007. 
              Engle, R.F. & Mezrich, J. 1996. GARCH for groups: A round-up of recent developments 
                in Garch techniques for estimating correlation. 
                Risk 9(8): 36-40. 
              Engle, R.F. & Ng, V.K. 
                1993. 
                Measuring and testing the impact of news on volatility. The 
                Journal of Finance 48(5): 1749-1778. 
              Foucault, T., Hombert, J. & Roşu, I. 
                2016. 
                News trading and speed. The Journal of Finance 71(1): 
                335-382. 
              Francq, C. & Zakoďan, J.M. 2010. GARCH Models: Structure, Statistical Inference and 
                Financial Applications. New York: John Wiley & Sons. 
              Francq, C., Horváth, 
                L. & Zakoďan, J.M. 2016. Variance targeting estimation 
                of multivariate GARCH models. Journal of Financial Econometrics 
                14(2): 353-382. 
              Francq, C., Horvath, L. & 
                Zakoďan, J.M. 2009. Merits and drawbacks of variance targeting 
                in GARCH models. Journal of Financial Econometrics 9(4): 
                619-656. 
              Glosten, 
                L.R., Jagannathan, R. & Runkle, 
                D.E. 1993. On the relation between the expected 
                value and the volatility of the nominal excess return on stocks. 
                The Journal of Finance 48(5): 1779-1801. 
              Iqbal, 
                F. 2013. Robust estimation of the simplified 
                multivariate GARCH model. Empirical Economics 44(3): 
                1-20. 
              Islam, 
                R. & Sultana, N. 2015. Day of the week effect on stock return 
                and volatility: Evidence from Chittagong stock exchange. European 
                Journal of Business and Management 7(3): 165-172. 
              Lee, 
                S.W. & Hansen, B.E. 1994. Asymptotic theory 
                for the GARCH (1, 1) quasi-maximum likelihood estimator. 
                Econometric Theory 10(1): 29-52. 
              Lim, 
                C.M. & Sek, S.K. 2013. Comparing the performances of GARCH-type models in capturing the stock 
                market volatility in Malaysia. Procedia Economics and 
                Finance 5: 478-487. 
              Ling, 
                S. & McAleer, M. 2002. Stationarity and the existence of moments of a family of GARCH processes. 
                Journal of Econometrics 106(1): 109-117. 
              Maheu, 
                J.M. & McCurdy, T.H. 2004. News arrival, jump dynamics, and 
                volatility components for individual stock returns. The Journal 
                of Finance 59(2): 755-793. 
              Mehdian, 
                S. & Perry, M.J. 2001. The reversal of the Monday effect: New 
                evidence from US equity markets. Journal of Business Finance 
                & Accounting 28(7‐8): 
                1043-1065. 
              Mukherjee, 
                K. 2008. M-estimation in GARCH models. 
                Econometric Theory 24(6): 1530-1553. 
              Muler, 
                N. & Yohai, V.J. 2008. Robust 
                estimates for GARCH models. Journal of Statistical Planning 
                and Inference 138(10): 2918-2940. 
              Narayan, 
                P.K. & Smyth, R. 2005. Cointegration 
                of stock markets between New Zealand, Australia and the G7 economies: 
                Searching for co-movement under structural change. Australian 
                Economic Papers 44(3): 231-247. 
              Nelson, 
                D.B. 1991. Conditional heteroskedasticity 
                in asset returns: A new approach. Econometrica: 
                Journal of the Econometric Society 59(2): 347-370. 
              Nelson, 
                D.B. & Foster, D.P. 1995. Filtering and forecasting with 
                misspecified ARCH models II: making the right forecast with 
                the wrong model. Journal of Econometrics 67(2): 303-335. 
                
              Newey, 
                W.K. & Steigerwald, D.G. 1997. Asymptotic bias for quasi-maximum-likelihood estimators in conditional 
                heteroskedasticity models. Econometrica: Journal of the Econometric Society 
                65(3): 587-599. 
              Oh, 
                S.L., Lau, E., Puah, C.H. & Mansor, 
                S.A. 2010. Volatility co-movement of Asean-5 
                equity markets. Journal of Advanced Studies in Finance 
                1(1): 23-30. 
              Pedersen, 
                R.S. & Rahbek, A. 2014. Multivariate 
                variance targeting in the BEKK–GARCH model. The Econometrics 
                Journal 17(1): 24-55.
              Peng, 
                L. & Yao, Q. 2003. 
                Least absolute deviations estimation for ARCH 
                and GARCH models. Biometrika 
                90(4): 967-975. 
              Shamiri, A. 
                & Isa, Z. 2009. 
                Modeling and forecasting volatility of the Malaysian stock markets. 
                Journal of Mathematics and Statistics 5(3): 234-240. 
              Thalassinos, E.I., 
                Ugurlu, E. & Muratoglu, 
                Y. 2014. 
                Comparison of forecasting volatility in the 
                Czech Republic stock market. Applied Economics and Finance 
                2(1): 11-18. 
              Tsukuda, Y., 
                Shimada, J. & Miyakoshi, T. 2017. Bond market integration in East 
                Asia: Multivariate GARCH with dynamic conditional correlations 
                approach. International Review of Economics & Finance 51: 
                193-213. 
              Vaynman, I. 
                & Beare, B.K. 2014. Stable 
                limit theory for the variance targeting estimator. In Essays 
                in Honor of Peter CB Phillips, edited by Chang, Y.S., Fomby, 
                T.B. & Park, J.Y. Bingley: Emerald 
                Group Publishing Limited. pp. 639-672. 
              Verhoeven, P. 
                & McAleer, M. 2004. Fat tails and asymmetry 
                in financial volatility models. Mathematics and Computers in 
                Simulation 64(3): 351-361. 
              Yaya, 
                O.S., Olubusoye, O.E. & Ojo, 
                O.O. 2014. 
                Estimates and forecasts of GARCH model under misspecified 
                probability distributions: A Monte Carlo simulation approach. 
                Journal of Modern Applied Statistical Methods 13(2): 479-492. 
                
               
               
              *Pengarang 
                untuk surat-menyurat: 
                mariam@tmsk.uitm.edu.my