Sains Malaysiana 48(10)(2019):
2113–2123
http://dx.doi.org/10.17576/jsm-2019-4810-06
Calibration of Rock Cutting Numerical
Model based on Monitoring Data
(Penentukuran Model
Berangka bagi
Pemotongan Batu berdasarkan Data Pemantauan)
VEDRAN PAVLIC1,
MARIO
BACIC2*
& MEHO SASA KOVACEVIC2
1Hidroinzenjering
d.o.o., Okucanska 30, 10 000 Zagreb,
Croatia
2University of Zagreb,
Faculty of Civil Engineering, Kaciceva
26, 10 000 Zagreb, Croatia
Diserahkan: 10 April 2019/Diterima: 17 September 2019
ABSTRACT
Prediction of the deformation
increment and the final displacement of the rock cutting is a challenging
task. Many ambiguities linked with unpredictable nature or rock
mass make it difficult to apply the adequate contingency measures.
Implementation of common approach, which includes modelling of discontinuity
effects with estimated reduction of rock mass strength and modulus
of elasticity, usually does not yield satisfactory results. Therefore,
a calibration of FEM based
numerical model was made by conducting parametric analysis which
feeds upon data obtained from extensive on-site monitoring system.
A step forward was made in description of numerical parameters of
karst discontinuities through consideration of monitoring results,
as well as excavation procedures, position, inclination and length
of discontinuities and PDC (project
design change).
Keywords: Discontinuities; karst;
numerical modelling; observational method; rock mass
ABSTRAK
Ramalan kenaikan canggaan dan sesaran akhir
pemotongan batu
adalah satu tugas
yang mencabar. Banyak
kesamaran yang dikaitkan dengan sifat yang tidak dapat diramalkan
atau jisim batu menyukarkan untuk menggunakan langkah kontingensi yang mencukupi. Pelaksanaan pendekatan biasa yang merangkumi pemodelan kesan ketakselanjaran dengan anggaran pengurangan kekuatan jisim batu dan
modulus keanjalan, kebiasaannya tidak memberikan keputusan yang memuaskan. Oleh itu, penentukuran
model berangka FEM dibuat
dengan menjalankan
analisis parametrik yang menggunakan data yang diperoleh
daripada sistem pemantauan ekstensif di tapak. Satu penambahbaikan
telah dibuat
dalam penerangan parameter berangka ketakselanjaran karst dengan mempertimbangkan keputusan pemantauan serta prosedur pengorekan, kedudukan, kecenderungan dan panjang ketakselanjaran dan PDC (perubahan
reka bentuk
projek).
Kata kunci: Jisim
batu; kaedah
pemerapan; karst; ketakselanjaran;
pemodelan berangka
RUJUKAN
Arbanas, Z. 2003. Construction
of Zagrad foundation pit in Rijeka. Građevinar 55: 591-597.
Barton,
N.R. & Bandis, S. 1990. Review of
predictive capabilities of JRC-JCS model in engineering practice.
Proc. Int. Symp. on Rock Joints, Rotterdam: Balkema,
pp. 603-610.
Bieniawski, Z.T. 1989. Engineering
Rock Mass Classifications. New York: Wiley.
Bjureland, W., Spross, J., Johansson, F., Prästings,
A. & Larsson, S. 2017. Reliability aspects of rock tunnel design
with the observational method. International Journal of Rock
Mechanics & Mining Sciences 98: 102-110. https://doi. org/10.1016/j.ijrmms.2017.07.004.
Bonilla-Sierra,
V., Scholtes, L., Donze,
F.V. & Elmouttie, M. 2015. Rock slope
stability analysis using photogrammetric data and DFN-DEM modelling.
Acta Geotechnica
10(4): 497-511. https://doi.org/10.1007/s11440-015-0374-z.
Chen,
S., Goh, T.L., Han, L. & Tovele, G.S.V.
2019. Effects of tectonic stresses and structural planes on slope
deformation and stability at the Buzhaoba
Open Pit Mine, China. Sains Malaysiana 48(2):
317-324. https://doi.org/10.17576/jsm- 2019-4802-07.
Frka, R. 2014. Digital Photography:
Zagrad B2, B6. Rijeka.
Goodman,
R.E. & Taylor, L.R. 1968. A model for the mechanics of jointed
rock. Journal of the Soil Mechanics and Foundations Division,
Proceedings of ASCE 94(SM3): 636-659.
Hammah, R.E., Yacoub, T.E., Corkum, B.C. &
Curran, J.H. 2008. The practical modelling of discontinuous rock
masses whit finite element analysis. The 42nd U.S. Rock Mechanics
Symposium (USRMS), 29 June-2 July, San Francisco, California.
American Rock Mechanics Association.
He,
Y., Peng, S., Du, W., Tang, X. & Zeng, H. 2017. Laboratory study
of acoustic velocity in different types of rocks at seismic frequency
band. Sains Malaysiana 46(11):
2187-2193. http:// dx.doi.org/10.17576/jsm-2017-4611-20.
Hoek,
E., Carranza-Torres, C.T. & Corkum,
B. 2002. Hoek- Brown failure criterion-2002 edition. In Proceedings
of the Fifth North American Rock Mechanics Symposium 1: 267-273.
Hoek,
E. & Diederichs, M.S. 2006. Empirical
estimation of rock mass modulus. International Journal of Rock
Mechanics and Mining Sciences 43: 203-215. https://doi.org/10.1016/j.
ijrmms.2005.06.005.
Huang,
L., Xu, Z. & Zhou, C. 2009. Modeling and monitoring in a soft
argillaceous shale tunnel. Acta
Geotechnica 4: 273-282. https://doi.org/10.1007/s11440-009-0100-9.
Itasca.
2014. PFC Version 5.0 documentation.
Jing,
L. & Hudson, J.A. 2002. Numerical methods in rock mechanics.
International Journal of Rock Mechanics and Mining Sciences 39(4):
409-427. https://doi.org/10.1016/ S1365-1609(02)00065-5.
Jurić Kaćunić, D., Arapov, I.
& Kovačević, M.S. 2011.
New approach to the determination of stiffness of carbonate rocks
in Croatian karst. Građevinar 63(2): 177-185.
Kujundzic, B. & Grujic, N. 1966. Correlation between static and dynamic investigations
of rock mass “in situ”. Proc. of 1st ISRM Congress 1:
565-570.
Latha, G.M. & Garaga,
A. 2012. Elasto-plastic analysis of jointed
rocks using discrete continuum and equivalent continuum approaches.
International Journal of Rock Mechanics & Mining Sciences
53: 56-63. https://doi.org/10.1016/j. ijrmms.2012.03.013.
Lin,
J.S. & Ku, C.Y. 2006. Two-scale modeling of jointed rockmasses.
Int. Jour. Rock Mech. Min. Sci. 43: 426-436. https://doi.org/10.1016/j.ijrmms.2005.07.009.
Louie,
J.N. 2001. Faster, Better: Shear-wave velocity to 100 meters
depth from refraction microtremor arrays.
Bulletin of the Seismological Society of America 91(2): 347-364.
Mohd Razib,
A.M., Goh, T.L.., Mazlan, N.A., Fahmi
Abdul Ghani, M., Tuan Rusli, T.M., Ghani
Rafek, A., Serasa, A.S., Chen, Y.
& Zhang, M. 2018. A systematic approach of rock slope stability
assessment: A case study at Gunung Kandu,
Gopeng, Perak, Malaysia. Sains
Malaysiana 47(7): 1413- 1421. http://dx.doi.org/10.17576/jsm-2018-4707-08.
Marinos, P. & Hoek,
E. 2000. GSI - a geologically friendly tool for rock mass strength
estimation. Proc. GeoEng2000.
Mas,
I.D., Potyondy, D.O., Pierce, M. &
Cundall, P.A. 2008. The smooth-joint contact model. 8th. World
Congress on Computational Mechanics (WCCM8), 5th. European Congress
on Computational Methods in Applied Sciences and Engineering (ECCOMAS
2008).
Pavlic, V. 2014. Residential-Business
Complex with Underground Garage “Zagrad
B”. Rijeka Projekt. Implementation
geotechnical design: Construction pit protection design (stress-deformation
analysis), 3300-666-2010/2, Institute IGH JSC.
Pollak, D. 2007. Influence of carbonate
rock masses on their engineering-geological properties. Ph.D. thesis,
Faculty of Mining, Geology and Petroleum Engineering, University
of Zagreb, Zagreb (Unpublished).
Potyondy, D.O. & Cundall,
P.A. 2004. A bonded-particle model for rock. International Journal
of Rock Mechanics and Mining Sciences 41: 1329-1364. https://doi.org/10.1016/j.
ijrmms.2004.09.011.
Rocscience Inc. 2010. Phase2 V7.0 - A Two-Dimensional
Finite Element Analysis Program.
Savi, R. 2014. Residential-Business
Complex with Underground Garage “Zagrad
B”. Rijeka Projekt. Measurement and
testing report, 2130-T-001/14, Institute IGH JSC.
Shen, C.K., Sadigh,
K. & Herrmann, L.R. 1978. An analysis of NGI simple shear apparatus
for cyclic soil testing. Dynamic Geotechnical Testing, ASTM STP
654. pp. 148-162.
Sturzeneger, M., Stead, D. & Pavicic, K. 2009. Close-range terrestrial digital photogrammetry
and terrestrial laser scanning for discontinuity characterization
on rock cuts. Engineering Geology 106(3-4): 163-182. https://doi.
org/10.1016/j.enggeo.2009.03.004.
Tang, S.B., Huang, R.Q., Tang, C.A.,
Liang, Z.Z. & Heap, M.J. 2017. The failure processes analysis
of rock slope using numerical modelling techniques. Engineering
Failure Analysis 79: 999-1016. https://doi.org/10.1016/j. engfailanal.2017.06.029.
Tomac, V. 2012. Residential-Business
Complex with Underground Garage “Zagrad
B”. Rijeka Projekt. Graund
anchor assessment tests report, BBR Adria Ltd.
Vuic, V.G., Opacak,
G. & Pavicic, K. 2014. Residential-business
complex with underground garage “Zagrad
B”. Rijeka Projekt. Engineering Geological Mapping Report, 4300-3/14,
Institute IGH JSC.
*Pengarang untuk surat-menyurat; email: mbacic@grad.hr
|