| Sains Malaysiana 48(10)(2019): 
              2113–2123  http://dx.doi.org/10.17576/jsm-2019-4810-06 
                 Calibration of Rock Cutting Numerical 
              Model based on Monitoring Data (Penentukuran Model 
              Berangka bagi 
              Pemotongan Batu berdasarkan Data Pemantauan)   VEDRAN PAVLIC1, 
              MARIO 
              BACIC2* 
              & MEHO SASA KOVACEVIC2   1Hidroinzenjering 
              d.o.o., Okucanska 30, 10 000 Zagreb, 
              Croatia    2University of Zagreb, 
              Faculty of Civil Engineering, Kaciceva 
              26, 10 000 Zagreb, Croatia   Diserahkan: 10 April 2019/Diterima: 17 September 2019   ABSTRACT Prediction of the deformation 
              increment and the final displacement of the rock cutting is a challenging 
              task. Many ambiguities linked with unpredictable nature or rock 
              mass make it difficult to apply the adequate contingency measures. 
              Implementation of common approach, which includes modelling of discontinuity 
              effects with estimated reduction of rock mass strength and modulus 
              of elasticity, usually does not yield satisfactory results. Therefore, 
              a calibration of FEM based 
              numerical model was made by conducting parametric analysis which 
              feeds upon data obtained from extensive on-site monitoring system. 
              A step forward was made in description of numerical parameters of 
              karst discontinuities through consideration of monitoring results, 
              as well as excavation procedures, position, inclination and length 
              of discontinuities and PDC (project 
              design change).   Keywords: Discontinuities; karst; 
              numerical modelling; observational method; rock mass   ABSTRAK Ramalan kenaikan canggaan dan sesaran akhir 
              pemotongan batu 
              adalah satu tugas 
              yang mencabar. Banyak 
              kesamaran yang dikaitkan dengan sifat yang tidak dapat diramalkan 
              atau jisim batu menyukarkan untuk menggunakan langkah kontingensi yang mencukupi. Pelaksanaan pendekatan biasa yang merangkumi pemodelan kesan ketakselanjaran dengan anggaran pengurangan kekuatan jisim batu dan 
              modulus keanjalan, kebiasaannya tidak memberikan keputusan yang memuaskan. Oleh itu, penentukuran 
              model berangka FEM dibuat 
              dengan menjalankan 
              analisis parametrik yang menggunakan data yang diperoleh 
              daripada sistem pemantauan ekstensif di tapak. Satu penambahbaikan 
              telah dibuat 
              dalam penerangan parameter berangka ketakselanjaran karst dengan mempertimbangkan keputusan pemantauan serta prosedur pengorekan, kedudukan, kecenderungan dan panjang ketakselanjaran dan PDC (perubahan 
              reka bentuk 
              projek).   Kata kunci: Jisim 
              batu; kaedah 
              pemerapan; karst; ketakselanjaran; 
              pemodelan berangka RUJUKAN 
               Arbanas, Z. 2003. Construction 
              of Zagrad foundation pit in Rijeka. Građevinar 55: 591-597.  Barton, 
              N.R. & Bandis, S. 1990. Review of 
              predictive capabilities of JRC-JCS model in engineering practice. 
              Proc. Int. Symp. on Rock Joints, Rotterdam: Balkema, 
              pp. 603-610.  Bieniawski, Z.T. 1989. Engineering 
              Rock Mass Classifications. New York: Wiley.  Bjureland, W., Spross, J., Johansson, F., Prästings, 
              A. & Larsson, S. 2017. Reliability aspects of rock tunnel design 
              with the observational method. International Journal of Rock 
              Mechanics & Mining Sciences 98: 102-110. https://doi. org/10.1016/j.ijrmms.2017.07.004. 
               Bonilla-Sierra, 
              V., Scholtes, L., Donze, 
              F.V. & Elmouttie, M. 2015. Rock slope 
              stability analysis using photogrammetric data and DFN-DEM modelling. 
              Acta Geotechnica 
              10(4): 497-511. https://doi.org/10.1007/s11440-015-0374-z.  Chen, 
              S., Goh, T.L., Han, L. & Tovele, G.S.V. 
              2019. Effects of tectonic stresses and structural planes on slope 
              deformation and stability at the Buzhaoba 
              Open Pit Mine, China. Sains Malaysiana 48(2): 
              317-324. https://doi.org/10.17576/jsm- 2019-4802-07.  Frka, R. 2014. Digital Photography: 
              Zagrad B2, B6. Rijeka.  Goodman, 
              R.E. & Taylor, L.R. 1968. A model for the mechanics of jointed 
              rock. Journal of the Soil Mechanics and Foundations Division, 
              Proceedings of ASCE 94(SM3): 636-659.  Hammah, R.E., Yacoub, T.E., Corkum, B.C. & 
              Curran, J.H. 2008. The practical modelling of discontinuous rock 
              masses whit finite element analysis. The 42nd U.S. Rock Mechanics 
              Symposium (USRMS), 29 June-2 July, San Francisco, California. 
              American Rock Mechanics Association.  He, 
              Y., Peng, S., Du, W., Tang, X. & Zeng, H. 2017. Laboratory study 
              of acoustic velocity in different types of rocks at seismic frequency 
              band. Sains Malaysiana 46(11): 
              2187-2193. http:// dx.doi.org/10.17576/jsm-2017-4611-20.  Hoek, 
              E., Carranza-Torres, C.T. & Corkum, 
              B. 2002. Hoek- Brown failure criterion-2002 edition. In Proceedings 
              of the Fifth North American Rock Mechanics Symposium 1: 267-273. 
               Hoek, 
              E. & Diederichs, M.S. 2006. Empirical 
              estimation of rock mass modulus. International Journal of Rock 
              Mechanics and Mining Sciences 43: 203-215. https://doi.org/10.1016/j. 
              ijrmms.2005.06.005.  Huang, 
              L., Xu, Z. & Zhou, C. 2009. Modeling and monitoring in a soft 
              argillaceous shale tunnel. Acta 
              Geotechnica 4: 273-282. https://doi.org/10.1007/s11440-009-0100-9. 
               Itasca. 
              2014. PFC Version 5.0 documentation.  Jing, 
              L. & Hudson, J.A. 2002. Numerical methods in rock mechanics. 
              International Journal of Rock Mechanics and Mining Sciences 39(4): 
              409-427. https://doi.org/10.1016/ S1365-1609(02)00065-5.  Jurić Kaćunić, D., Arapov, I. 
              & Kovačević, M.S. 2011. 
              New approach to the determination of stiffness of carbonate rocks 
              in Croatian karst. Građevinar 63(2): 177-185.  Kujundzic, B. & Grujic, N. 1966. Correlation between static and dynamic investigations 
              of rock mass “in situ”. Proc. of 1st ISRM Congress 1: 
              565-570.  Latha, G.M. & Garaga, 
              A. 2012. Elasto-plastic analysis of jointed 
              rocks using discrete continuum and equivalent continuum approaches. 
              International Journal of Rock Mechanics & Mining Sciences 
              53: 56-63. https://doi.org/10.1016/j. ijrmms.2012.03.013.  Lin, 
              J.S. & Ku, C.Y. 2006. Two-scale modeling of jointed rockmasses. 
              Int. Jour. Rock Mech. Min. Sci. 43: 426-436. https://doi.org/10.1016/j.ijrmms.2005.07.009. 
               Louie, 
              J.N. 2001. Faster, Better: Shear-wave velocity to 100 meters 
              depth from refraction microtremor arrays. 
              Bulletin of the Seismological Society of America 91(2): 347-364. 
               Mohd Razib, 
              A.M., Goh, T.L.., Mazlan, N.A., Fahmi 
              Abdul Ghani, M., Tuan Rusli, T.M., Ghani 
              Rafek, A., Serasa, A.S., Chen, Y. 
              & Zhang, M. 2018. A systematic approach of rock slope stability 
              assessment: A case study at Gunung Kandu, 
              Gopeng, Perak, Malaysia. Sains 
              Malaysiana 47(7): 1413- 1421. http://dx.doi.org/10.17576/jsm-2018-4707-08. 
               Marinos, P. & Hoek, 
              E. 2000. GSI - a geologically friendly tool for rock mass strength 
              estimation. Proc. GeoEng2000.  Mas, 
              I.D., Potyondy, D.O., Pierce, M. & 
              Cundall, P.A. 2008. The smooth-joint contact model. 8th. World 
              Congress on Computational Mechanics (WCCM8), 5th. European Congress 
              on Computational Methods in Applied Sciences and Engineering (ECCOMAS 
              2008).  Pavlic, V. 2014. Residential-Business 
              Complex with Underground Garage “Zagrad 
              B”. Rijeka Projekt. Implementation 
              geotechnical design: Construction pit protection design (stress-deformation 
              analysis), 3300-666-2010/2, Institute IGH JSC. Pollak, D. 2007. Influence of carbonate 
              rock masses on their engineering-geological properties. Ph.D. thesis, 
              Faculty of Mining, Geology and Petroleum Engineering, University 
              of Zagreb, Zagreb (Unpublished).  Potyondy, D.O. & Cundall, 
              P.A. 2004. A bonded-particle model for rock. International Journal 
              of Rock Mechanics and Mining Sciences 41: 1329-1364. https://doi.org/10.1016/j. 
              ijrmms.2004.09.011.  Rocscience Inc. 2010. Phase2 V7.0 - A Two-Dimensional 
              Finite Element Analysis Program.  Savi, R. 2014. Residential-Business 
              Complex with Underground Garage “Zagrad 
              B”. Rijeka Projekt. Measurement and 
              testing report, 2130-T-001/14, Institute IGH JSC.  Shen, C.K., Sadigh, 
              K. & Herrmann, L.R. 1978. An analysis of NGI simple shear apparatus 
              for cyclic soil testing. Dynamic Geotechnical Testing, ASTM STP 
              654. pp. 148-162.  Sturzeneger, M., Stead, D. & Pavicic, K. 2009. Close-range terrestrial digital photogrammetry 
              and terrestrial laser scanning for discontinuity characterization 
              on rock cuts. Engineering Geology 106(3-4): 163-182. https://doi. 
              org/10.1016/j.enggeo.2009.03.004.  Tang, S.B., Huang, R.Q., Tang, C.A., 
              Liang, Z.Z. & Heap, M.J. 2017. The failure processes analysis 
              of rock slope using numerical modelling techniques. Engineering 
              Failure Analysis 79: 999-1016. https://doi.org/10.1016/j. engfailanal.2017.06.029. 
               Tomac, V. 2012. Residential-Business 
              Complex with Underground Garage “Zagrad 
              B”. Rijeka Projekt. Graund 
              anchor assessment tests report, BBR Adria Ltd.  Vuic, V.G., Opacak, 
              G. & Pavicic, K. 2014. Residential-business 
              complex with underground garage “Zagrad 
              B”. Rijeka Projekt. Engineering Geological Mapping Report, 4300-3/14, 
              Institute IGH JSC.    *Pengarang untuk surat-menyurat; email: mbacic@grad.hr  
                  
                  
       |