| Sains Malaysiana 48(10)(2019): 2125–2133  http://dx.doi.org/10.17576/jsm-2019-4810-07 
                 Optimization of CTAB-based 
              RNA Extraction for in planta Fusarium oxysporum 
              f. sp. cubense Gene Expression Study (Pengoptimuman Pengekstrakan RNA Berasaskan CTAB 
              untuk Kajian Pengekspresan Gen Fusarium oxysporum 
              f. sp. cubense secara in planta)   NEE KIEW 
              POON1, 
              ROFINA 
              YASMIN 
              OTHMAN1,2, 
              KATHARINA 
              MEBUS2 
              & CHEE HOW TEO2*   1Institute of Biological Sciences, 
              Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia   2Centre for Research in Biotechnology 
              for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, 
              Federal Territory, Malaysia   Received: 
              13 November 2018/Accepted: 20 September 2019   ABSTRACT A crucial 
              prerequisite for an insightful gene expression study is the quality 
              of the nucleic acid extracted. High-quality nucleic acids allow 
              comparative downstream analyses for both organisms during a phytopathogen 
              infection. However, RNA extraction of pathogen-infected host materials 
              usually involves extraction methods that are optimised individually 
              for either the pathogen or the host. Different sets of buffers or 
              specialised commercial kits are often required. In this study, a 
              streamlined CTAB-based extraction protocol 
              was optimised for both the pure culture of Fusarium oxysporum f. 
              sp. cubense (Foc) and infected banana roots. Foc 
              cultures were grown on PDA overlaid by a nylon membrane and total nucleic acids 
              were successfully extracted from mycelia with a ratio of 100 mg 
              mycelia powder mass to 2 mL of CTAB buffer. Using the optimised protocol, 
              LiCl-precipitated RNAs showed higher values of A260/280 
              (2.064 ± 0.021) and A260/230 (1.937 ± 0.076) compared 
              to ethanol precipitated RNAs. Similar observation was 
              observed for inoculated banana roots where LiCl-precipitated RNAs 
              showed higher values of A260/280 and A260/230 compared 
              to ethanol precipitated RNAs. qRT-PCR analysis 
              using a pair of Foc specific primers, FoTEF1α, confirmed that 
              the LiCl-precipitated RNA was more suitable for downstream 
              gene expression studies. This extraction protocol is applicable 
              for Foc in planta gene expression study with a high potential 
              to be extended to other filamentous fungal pathogens.  Keywords: 
              Fusarium oxysporum f. sp. cubense; hexadecyltrimethylammonium 
              bromide (CTAB); in planta gene expression   ABSTRAK Prasyarat penting untuk kajian 
              pengekspresan gen yang tepat adalah kualiti asid nukleik yang diekstrak. 
              Asid nukleik berkualiti tinggi membolehkan analisis hiliran komparatif 
              bagi kedua-dua organisma semasa jangkitan fitopatogen. Walau bagaimanapun, 
              pengambilan RNA perumah yang dijangkiti patogen biasanya melibatkan 
              kaedah pengekstrakan yang dioptimumkan secara individu untuk sama 
              ada patogen atau perumah. Pelbagai penimbal atau kit komersial khusus 
              sering diperlukan. Dalam kajian ini, protokol pengekstrakan berasaskan 
              CTAB dioptimumkan 
              untuk kedua-dua kultur tulen Fusarium oxysporum f. sp. 
              cubense (Foc) dan akar pisang yang dijangkiti. Foc 
              dikultur pada PDA 
              yang dilapisi oleh membran nilon dan asid nukleik 
              berjaya diekstrak daripada miselium dengan nisbah 100 mg serbuk 
              miselium kepada 2 mL penimbal CTAB. 
              Dengan protokol yang dioptimumkan, RNA yang dimendak oleh LiCl menunjukkan 
              nilai A260/280 (2.064 ± 0.021) dan A260/230 
              (1.937 ± 0.076) yang lebih tinggi berbanding RNA yang 
              dimendak menggunakan etanol. Pemerhatian yang sama dicerap untuk 
              akar pisang yang diinokulasi dengan RNA yang dimendak oleh LiCl menunjukkan 
              nilai A260/280 dan A260/230 yang 
              lebih tinggi berbanding RNA yang dimendak menggunakan etanol. 
              Analisis qRT-PCR menggunakan pasangan pencetus khusus Foc, 
              FoTEF1α, mengesahkan bahawa RNA yang dimendak oleh LiCl lebih 
              sesuai untuk kajian pengekspresan gen hiliran. Protokol pengekstrakan 
              ini boleh digunakan untuk kajian pengekspresan gen Foc secara 
              in planta dan berpotensi tinggi untuk diperluaskan kepada 
              patogen kulat filamen lain.   Kata kunci: Fusarium oxysporum f. sp. cubense; heksadesiltrimetil ammonium bromida (CTAB); 
              pengekspresan gen in planta RUJUKAN Abu 
              Almakarem, A.S., Heilman, K.L., Conger, H.L., Shtarkman, Y.M. & 
              Rogers, S.O. 2012. Extraction of DNA from plant and fungus tissues 
              in situ. BMC Research Notes 5: 266- 277. doi:10.1186/1756-0500-5-266. 
               Anderson, 
              J.P., Hane, J.K., Stoll, T., Pain, N., Hastie, M.L., Kaur, P., Hoogland, 
              C., Gorman, J.J. & Singh, K.B. 2016. Proteomic analysis of Rhizoctonia 
              solani identifies infection-specific, redox associated proteins 
              and insight into adaptation to different plant hosts. Molecular 
              and Cellular Proteomics 15(4): 1188-1203. doi: 10.1074/mcp.M115.054502. 
               Barlow, 
              J.J., Mathias, A.P., Williamson, R. & Gammack, D.B. 1963. A 
              simple method for the quantitative isolation of undegraded high 
              molecular weight ribonucleic acid. Biochemical & Biophysical 
              Research Communications 13(1): 61-66. doi: 10.1016/0006-291X(63)90163-3. 
               Bernáldez, 
              V., Rodríguez, A., Rodríguez, M., Sánchez-Montero, L. & Córdoba, 
              J.J. 2017. Evaluation of different RNA extraction methods of filamentous 
              fungi in various food matrices. LWT-Food Science Technology 78: 
              47-53. doi: 10.1016/j.lwt.2016.12.018.  Brandfass, 
              C. & Karlovsky, P. 2008. Upscaled CTAB-based DNA extraction 
              and real-time PCR assays for Fusarium culmorum and F. 
              graminearum DNA in plant material with reduced sampling error. 
              International Journal of Molecular Sciences 9(11): 2306-2321. 
              doi: 10.3390/ijms9112306.  Bryant, 
              J.A. 1996. DNA extraction. In Methods in Plant Biochemistry Molecular 
              Biology, Vol. 10, edited by Bryant, J.A. Amsterdam: Elsevier. 
              pp. 1-12.  Chomczynski, 
              P. & Sacchi, N. 2006. The single-step method of RNA isolation 
              by acid guanidinium thiocyanatephenol-chloroform extraction: Twenty-something 
              years on. Nature Protocols 1(2): 581-585. doi: 10.1038/nprot.2006.83. 
               Clarke, 
              J.D. 2009. Cetyltrimethyl Ammonium Bromide (CTAB) DNA miniprep for 
              plant DNA isolation. Cold Spring Harbour Protocols 2009(3): 
              pdb.prot5177. doi: 10.1101/pdb.prot5177.  Cox, 
              R.A. 1968. The use of guanidine chloride in the isolation of nucleic 
              acids. Methods in Enzymology 12: 120-129. doi: 10.1016/0076-6879(67)12123-X. 
               De 
              Cal, A., Pascual, S. & Melgarejo, P. 1997 Infectivity of chlamydospores 
              vs microconidia of Fusarium oxysporum f. sp. lycopersici 
              on tomato. Journal of Phytopathology 145(5-6): 231-233. 
              doi: 10.1111/j.1439-0434.1997.tb00391.x.  Doyle, 
              J.J. & Doyle, J.L. 1987. Genomic plant DNA preparation from 
              fresh tissue-CTAB method. Phytochemical Bulletin 19: 11-15. 
               Fang, 
              G., Hammar, S. & Grumet, R. 1992. A quick and inexpensive method 
              for removing polysaccharides from plant genomic DNA. Biotechniques 
              13(1): 52-55.  Gambino, 
              G., Perrone, I. & Gribaudo, I. 2008. A rapid and effective method 
              for RNA extraction from different tissues of grapevine and other 
              woody plants. Phytochemical Analysis 19(6): 520-525. doi: 
              10.1002/pca.1078.  Gontia-Mishra, 
              I., Tripathi, N. & Tiwari, S. 2014. A simple and rapid DNA extraction 
              protocol for filamentous fungi efficient for molecular studies. 
              Indian Journal of Biotechnology 13: 536-539.  González-Mendoza, 
              D., Argumedo-Delira, R., Morales-Trejo, A., Pulido-Herrera, Cervantes-Díaz, 
              L., Grimaldo-Juarez, O. & Alarcón, A. 2010. A rapid method for 
              isolation of total DNA from pathogenic filamentous plant fungi. 
              Genetics and Molecular Research 9(1): 162-166. doi: 10.4238/vol9- 
              1gmr680.  Islas-Flores, 
              I., Peraza-Echevarria, L., Canto-Canche, B. & Rodriguez-Garcia, 
              C.M. 2006. Extraction of high-quality, melanin-free RNA from Mycosphaerella 
              fijiensis for cDNA preparation. Molecular Biotechnology 34(1): 
              45-50. doi: 10.1385/MB:34:1:45.  Johari, 
              S. & Majumder, S. 2015. An Efficient DNA extraction protocol 
              for successful PCR detection of banana bunchy top virus from banana 
              leaves. Asian Journal of Biotechnology 7(2): 80-87. doi: 
              10.3923/ajbkr.2015.80.87.  Khan, 
              S., Qureshi, M.I., Kamaluddin, M., Alam, T. & Abdin, M.Z. 2007. 
              Protocol for isolation of genomic DNA from dry and fresh roots of 
              medicinal plants suitable for RAPD and restriction digestion. African 
              Journal of Biotechnology 6(3): 175-178.  Leite, 
              G.M., Magan, N. & Medina, Á. 2012. Comparison of different bead-beating 
              RNA extraction strategies: An optimized method for filamentous fungi. 
              Journal of Microbiological Methods 88: 413-418. doi: 10.1016/j. 
              mimet.2012.01.011.  Lim, N.Y.N., 
              Roco, C.A. & Frostegård, A. 2016. Transparent DNA/RNA co-extraction 
              workflow protocol suitable for inhibitor-rich 
              environmental samples that focuses on complete DNA removal for transcriptomic 
              analyses. Frontiers in Microbiology 7: 1588. doi: 10.3389/fmicb.2016.01588. Martínez-Fuentes, A., Mesejo, C., 
              Agustí, M. & Reig, C. 2015. Toward a more efficient isolation 
              of total RNA from loquat (Eriobotrya japonica Lindl.) tissues. 
              Fruits 70(1): 47-51. doi: 10.1051/fruits/2014042.  Mbéguié-A-Mbéguié, D., Fils-Lycaon, 
              B., Chillet, M., Hubert, O., Galas, C. & Gomez, R. 2008. Extraction 
              and purification of total RNA from banana tissues (small scale). 
              Fruits 63(4): 255-261. doi: 10.1051/fruits:2008020.  Mohamed, A.A., Mak, C., Liew, K.W. 
              & Ho, Y.W. 1999. Early evaluation of banana plants at nursery 
              stage for Fusarium wilt tolerance. In Seminar on Banana Fusarium 
              Wilt Management Towards Sustainable Cultivation, edited by Molina, 
              A.B., Nik Masdek, N.H. & Liew, K.W. Pahang, Malaysia: Genting 
              Highlands Resort. pp. 174-185.  Rubio-Piña, J.A. & Zapata-Pérez, 
              O. 2011. Isolation of total RNA from tissues rich in polyphenols 
              and polysaccharides of mangrove plants. Electronic Journal of 
              Biotechnology 14(5): 10. doi: 10.2225/vol14-issue5-fulltext-10. 
               Sambrook, J. & Russel, D.W. 2001. 
              Plasmids and their usefulness in molecular cloning. In Molecular 
              Cloning: A Laboratory Manual, 3rd ed. Vol 1., edited by Sambrook, 
              J. & Russel, D.W. New York: Cold Spring Harbor. pp. 82-83.  Schumann, U., Smith, N.A. & Wang, 
              M-B. 2013. A fast and efficient method for preparation of high-quality 
              RNA from fungal mycelia. BMC Research Notes 6(1): 71. doi: 
              10.1186/1756-0500-6-71.  Shackelford, R.E. 2018. Ethanol 
              Precipitation/Salting Out. PathologyOutlines.com, Inc. http://www.pathologyoutlines. 
              com/topic/moleculardnapurethanolprecip.html. Accessed on 18 June 
              2018.  Sharma, K., Bhattacharjee, R., Sartie, 
              A. & Kumar, P.L. 2013. An improved method of DNA extraction 
              from plants for pathogen detection and genotyping by polymerase 
              chain reaction. African Journal of Biotechnology 12(15): 
              1894-1901. doi: 10.5897/AJB12.2096.  Sάnchez-Rodrίguez, A., Portal, 
              O., Rojas, L.E., Ocaña, B., Mendoza, M., Acosta, M., Jiménez, E. 
              & Höfte, M. 2008. An efficient method for the extraction of 
              high-quality fungal total RNA to study the Mycosphaerella fijiensis 
              - Musa spp. interaction. Molecular Biotechnology 40(3): 
              299-305. doi: 10.1007/s12033-008-9092-1.  Tan, S.C. & Yiap, B.C. 2009. DNA, 
              RNA, and protein extraction: The past and the present. Journal 
              of Biomedicine and Biotechnology 2009: 574398. doi: 10.1155/2009/574398. 
               Williams, S.A., Slatko, B.E. & 
              McCarrey, J.R. 2007. Laboratory Investigations in Molecular Biology. 
              Massachusetts: Jones and Bartlett.  Yaffe, H., Buxdorf, K., Shapira, I., 
              Ein-Gedi, S., Zvi, M.M-B., Fridman, E., Moshelion, M. & Levy, 
              M. 2012. LogSpin: A simple, economical and fast method for RNA isolation 
              from infected or healthy plants and other eukaryotic tissues. BMC 
              Research Notes 5: 45. doi: 10.1186/1756-0500-5-45.  Yang, Y., Zuzak, K. & Feng, J. 
              2016 An improved simple method for DNA extraction from fungal mycelia. 
              Canadian Journal of Plant Pathology 38(4): 476-482. doi: 
              10.1080/07060661.2016.1243585.    *Corresponding author; 
              email: cheehow.teo@um.edu.my  
                  
                  
       |