Sains Malaysiana 48(10)(2019): 2125–2133
http://dx.doi.org/10.17576/jsm-2019-4810-07
Optimization of CTAB-based
RNA Extraction for in planta Fusarium oxysporum
f. sp. cubense Gene Expression Study
(Pengoptimuman Pengekstrakan RNA Berasaskan CTAB
untuk Kajian Pengekspresan Gen Fusarium oxysporum
f. sp. cubense secara in planta)
NEE KIEW
POON1,
ROFINA
YASMIN
OTHMAN1,2,
KATHARINA
MEBUS2
& CHEE HOW TEO2*
1Institute of Biological Sciences,
Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Centre for Research in Biotechnology
for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
Received:
13 November 2018/Accepted: 20 September 2019
ABSTRACT
A crucial
prerequisite for an insightful gene expression study is the quality
of the nucleic acid extracted. High-quality nucleic acids allow
comparative downstream analyses for both organisms during a phytopathogen
infection. However, RNA extraction of pathogen-infected host materials
usually involves extraction methods that are optimised individually
for either the pathogen or the host. Different sets of buffers or
specialised commercial kits are often required. In this study, a
streamlined CTAB-based extraction protocol
was optimised for both the pure culture of Fusarium oxysporum f.
sp. cubense (Foc) and infected banana roots. Foc
cultures were grown on PDA overlaid by a nylon membrane and total nucleic acids
were successfully extracted from mycelia with a ratio of 100 mg
mycelia powder mass to 2 mL of CTAB buffer. Using the optimised protocol,
LiCl-precipitated RNAs showed higher values of A260/280
(2.064 ± 0.021) and A260/230 (1.937 ± 0.076) compared
to ethanol precipitated RNAs. Similar observation was
observed for inoculated banana roots where LiCl-precipitated RNAs
showed higher values of A260/280 and A260/230 compared
to ethanol precipitated RNAs. qRT-PCR analysis
using a pair of Foc specific primers, FoTEF1α, confirmed that
the LiCl-precipitated RNA was more suitable for downstream
gene expression studies. This extraction protocol is applicable
for Foc in planta gene expression study with a high potential
to be extended to other filamentous fungal pathogens.
Keywords:
Fusarium oxysporum f. sp. cubense; hexadecyltrimethylammonium
bromide (CTAB); in planta gene expression
ABSTRAK
Prasyarat penting untuk kajian
pengekspresan gen yang tepat adalah kualiti asid nukleik yang diekstrak.
Asid nukleik berkualiti tinggi membolehkan analisis hiliran komparatif
bagi kedua-dua organisma semasa jangkitan fitopatogen. Walau bagaimanapun,
pengambilan RNA perumah yang dijangkiti patogen biasanya melibatkan
kaedah pengekstrakan yang dioptimumkan secara individu untuk sama
ada patogen atau perumah. Pelbagai penimbal atau kit komersial khusus
sering diperlukan. Dalam kajian ini, protokol pengekstrakan berasaskan
CTAB dioptimumkan
untuk kedua-dua kultur tulen Fusarium oxysporum f. sp.
cubense (Foc) dan akar pisang yang dijangkiti. Foc
dikultur pada PDA
yang dilapisi oleh membran nilon dan asid nukleik
berjaya diekstrak daripada miselium dengan nisbah 100 mg serbuk
miselium kepada 2 mL penimbal CTAB.
Dengan protokol yang dioptimumkan, RNA yang dimendak oleh LiCl menunjukkan
nilai A260/280 (2.064 ± 0.021) dan A260/230
(1.937 ± 0.076) yang lebih tinggi berbanding RNA yang
dimendak menggunakan etanol. Pemerhatian yang sama dicerap untuk
akar pisang yang diinokulasi dengan RNA yang dimendak oleh LiCl menunjukkan
nilai A260/280 dan A260/230 yang
lebih tinggi berbanding RNA yang dimendak menggunakan etanol.
Analisis qRT-PCR menggunakan pasangan pencetus khusus Foc,
FoTEF1α, mengesahkan bahawa RNA yang dimendak oleh LiCl lebih
sesuai untuk kajian pengekspresan gen hiliran. Protokol pengekstrakan
ini boleh digunakan untuk kajian pengekspresan gen Foc secara
in planta dan berpotensi tinggi untuk diperluaskan kepada
patogen kulat filamen lain.
Kata kunci: Fusarium oxysporum f. sp. cubense; heksadesiltrimetil ammonium bromida (CTAB);
pengekspresan gen in planta
RUJUKAN
Abu
Almakarem, A.S., Heilman, K.L., Conger, H.L., Shtarkman, Y.M. &
Rogers, S.O. 2012. Extraction of DNA from plant and fungus tissues
in situ. BMC Research Notes 5: 266- 277. doi:10.1186/1756-0500-5-266.
Anderson,
J.P., Hane, J.K., Stoll, T., Pain, N., Hastie, M.L., Kaur, P., Hoogland,
C., Gorman, J.J. & Singh, K.B. 2016. Proteomic analysis of Rhizoctonia
solani identifies infection-specific, redox associated proteins
and insight into adaptation to different plant hosts. Molecular
and Cellular Proteomics 15(4): 1188-1203. doi: 10.1074/mcp.M115.054502.
Barlow,
J.J., Mathias, A.P., Williamson, R. & Gammack, D.B. 1963. A
simple method for the quantitative isolation of undegraded high
molecular weight ribonucleic acid. Biochemical & Biophysical
Research Communications 13(1): 61-66. doi: 10.1016/0006-291X(63)90163-3.
Bernáldez,
V., Rodríguez, A., Rodríguez, M., Sánchez-Montero, L. & Córdoba,
J.J. 2017. Evaluation of different RNA extraction methods of filamentous
fungi in various food matrices. LWT-Food Science Technology 78:
47-53. doi: 10.1016/j.lwt.2016.12.018.
Brandfass,
C. & Karlovsky, P. 2008. Upscaled CTAB-based DNA extraction
and real-time PCR assays for Fusarium culmorum and F.
graminearum DNA in plant material with reduced sampling error.
International Journal of Molecular Sciences 9(11): 2306-2321.
doi: 10.3390/ijms9112306.
Bryant,
J.A. 1996. DNA extraction. In Methods in Plant Biochemistry Molecular
Biology, Vol. 10, edited by Bryant, J.A. Amsterdam: Elsevier.
pp. 1-12.
Chomczynski,
P. & Sacchi, N. 2006. The single-step method of RNA isolation
by acid guanidinium thiocyanatephenol-chloroform extraction: Twenty-something
years on. Nature Protocols 1(2): 581-585. doi: 10.1038/nprot.2006.83.
Clarke,
J.D. 2009. Cetyltrimethyl Ammonium Bromide (CTAB) DNA miniprep for
plant DNA isolation. Cold Spring Harbour Protocols 2009(3):
pdb.prot5177. doi: 10.1101/pdb.prot5177.
Cox,
R.A. 1968. The use of guanidine chloride in the isolation of nucleic
acids. Methods in Enzymology 12: 120-129. doi: 10.1016/0076-6879(67)12123-X.
De
Cal, A., Pascual, S. & Melgarejo, P. 1997 Infectivity of chlamydospores
vs microconidia of Fusarium oxysporum f. sp. lycopersici
on tomato. Journal of Phytopathology 145(5-6): 231-233.
doi: 10.1111/j.1439-0434.1997.tb00391.x.
Doyle,
J.J. & Doyle, J.L. 1987. Genomic plant DNA preparation from
fresh tissue-CTAB method. Phytochemical Bulletin 19: 11-15.
Fang,
G., Hammar, S. & Grumet, R. 1992. A quick and inexpensive method
for removing polysaccharides from plant genomic DNA. Biotechniques
13(1): 52-55.
Gambino,
G., Perrone, I. & Gribaudo, I. 2008. A rapid and effective method
for RNA extraction from different tissues of grapevine and other
woody plants. Phytochemical Analysis 19(6): 520-525. doi:
10.1002/pca.1078.
Gontia-Mishra,
I., Tripathi, N. & Tiwari, S. 2014. A simple and rapid DNA extraction
protocol for filamentous fungi efficient for molecular studies.
Indian Journal of Biotechnology 13: 536-539.
González-Mendoza,
D., Argumedo-Delira, R., Morales-Trejo, A., Pulido-Herrera, Cervantes-Díaz,
L., Grimaldo-Juarez, O. & Alarcón, A. 2010. A rapid method for
isolation of total DNA from pathogenic filamentous plant fungi.
Genetics and Molecular Research 9(1): 162-166. doi: 10.4238/vol9-
1gmr680.
Islas-Flores,
I., Peraza-Echevarria, L., Canto-Canche, B. & Rodriguez-Garcia,
C.M. 2006. Extraction of high-quality, melanin-free RNA from Mycosphaerella
fijiensis for cDNA preparation. Molecular Biotechnology 34(1):
45-50. doi: 10.1385/MB:34:1:45.
Johari,
S. & Majumder, S. 2015. An Efficient DNA extraction protocol
for successful PCR detection of banana bunchy top virus from banana
leaves. Asian Journal of Biotechnology 7(2): 80-87. doi:
10.3923/ajbkr.2015.80.87.
Khan,
S., Qureshi, M.I., Kamaluddin, M., Alam, T. & Abdin, M.Z. 2007.
Protocol for isolation of genomic DNA from dry and fresh roots of
medicinal plants suitable for RAPD and restriction digestion. African
Journal of Biotechnology 6(3): 175-178.
Leite,
G.M., Magan, N. & Medina, Á. 2012. Comparison of different bead-beating
RNA extraction strategies: An optimized method for filamentous fungi.
Journal of Microbiological Methods 88: 413-418. doi: 10.1016/j.
mimet.2012.01.011.
Lim, N.Y.N.,
Roco, C.A. & Frostegård, A. 2016. Transparent DNA/RNA co-extraction
workflow protocol suitable for inhibitor-rich
environmental samples that focuses on complete DNA removal for transcriptomic
analyses. Frontiers in Microbiology 7: 1588. doi: 10.3389/fmicb.2016.01588.
Martínez-Fuentes, A., Mesejo, C.,
Agustí, M. & Reig, C. 2015. Toward a more efficient isolation
of total RNA from loquat (Eriobotrya japonica Lindl.) tissues.
Fruits 70(1): 47-51. doi: 10.1051/fruits/2014042.
Mbéguié-A-Mbéguié, D., Fils-Lycaon,
B., Chillet, M., Hubert, O., Galas, C. & Gomez, R. 2008. Extraction
and purification of total RNA from banana tissues (small scale).
Fruits 63(4): 255-261. doi: 10.1051/fruits:2008020.
Mohamed, A.A., Mak, C., Liew, K.W.
& Ho, Y.W. 1999. Early evaluation of banana plants at nursery
stage for Fusarium wilt tolerance. In Seminar on Banana Fusarium
Wilt Management Towards Sustainable Cultivation, edited by Molina,
A.B., Nik Masdek, N.H. & Liew, K.W. Pahang, Malaysia: Genting
Highlands Resort. pp. 174-185.
Rubio-Piña, J.A. & Zapata-Pérez,
O. 2011. Isolation of total RNA from tissues rich in polyphenols
and polysaccharides of mangrove plants. Electronic Journal of
Biotechnology 14(5): 10. doi: 10.2225/vol14-issue5-fulltext-10.
Sambrook, J. & Russel, D.W. 2001.
Plasmids and their usefulness in molecular cloning. In Molecular
Cloning: A Laboratory Manual, 3rd ed. Vol 1., edited by Sambrook,
J. & Russel, D.W. New York: Cold Spring Harbor. pp. 82-83.
Schumann, U., Smith, N.A. & Wang,
M-B. 2013. A fast and efficient method for preparation of high-quality
RNA from fungal mycelia. BMC Research Notes 6(1): 71. doi:
10.1186/1756-0500-6-71.
Shackelford, R.E. 2018. Ethanol
Precipitation/Salting Out. PathologyOutlines.com, Inc. http://www.pathologyoutlines.
com/topic/moleculardnapurethanolprecip.html. Accessed on 18 June
2018.
Sharma, K., Bhattacharjee, R., Sartie,
A. & Kumar, P.L. 2013. An improved method of DNA extraction
from plants for pathogen detection and genotyping by polymerase
chain reaction. African Journal of Biotechnology 12(15):
1894-1901. doi: 10.5897/AJB12.2096.
Sάnchez-Rodrίguez, A., Portal,
O., Rojas, L.E., Ocaña, B., Mendoza, M., Acosta, M., Jiménez, E.
& Höfte, M. 2008. An efficient method for the extraction of
high-quality fungal total RNA to study the Mycosphaerella fijiensis
- Musa spp. interaction. Molecular Biotechnology 40(3):
299-305. doi: 10.1007/s12033-008-9092-1.
Tan, S.C. & Yiap, B.C. 2009. DNA,
RNA, and protein extraction: The past and the present. Journal
of Biomedicine and Biotechnology 2009: 574398. doi: 10.1155/2009/574398.
Williams, S.A., Slatko, B.E. &
McCarrey, J.R. 2007. Laboratory Investigations in Molecular Biology.
Massachusetts: Jones and Bartlett.
Yaffe, H., Buxdorf, K., Shapira, I.,
Ein-Gedi, S., Zvi, M.M-B., Fridman, E., Moshelion, M. & Levy,
M. 2012. LogSpin: A simple, economical and fast method for RNA isolation
from infected or healthy plants and other eukaryotic tissues. BMC
Research Notes 5: 45. doi: 10.1186/1756-0500-5-45.
Yang, Y., Zuzak, K. & Feng, J.
2016 An improved simple method for DNA extraction from fungal mycelia.
Canadian Journal of Plant Pathology 38(4): 476-482. doi:
10.1080/07060661.2016.1243585.
*Corresponding author;
email: cheehow.teo@um.edu.my
|