Sains Malaysiana 48(10)(2019):
2185–2190
http://dx.doi.org/10.17576/jsm-2019-4810-14
Binocular and Monocular Resolution
Thresholds Throughout Adulthood for Luminance-Modulated and Contrast-Modulated
Noise Letters
(Nilai Ambang Resolusi Monokular dan Binokular
sepanjang Usia Dewasa untuk Stimulus Hingar Termodulasi Luminans
dan Kontras)
PUI JUAN WOI,
SHARANJEET-KAUR
& MOHD IZZUDDIN HAIROL*
Optometry & Vision
Science Programme, Centre for Community
Health, Faculty of Health Sciences, Universiti
Kebangsaan Malaysia, Jalan Raja
Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 7 Oktober 2018/Diterima: 20 September
2019
ABSTRACT
Contrast-modulated
(CM)
noise stimuli are thought to be processed in higher, more binocular
visual areas compared to luminance-modulated (LM) stimuli, and the ability to
perceive them may be more susceptible to ageing. The aim of this
study was to determine monocular and binocular resolution thresholds
for LM and
CM
noise letters throughout adulthood. Resolution thresholds
for LM
and CM
noise letters were measured in 25 participants (age
21-70 years old) under monocular and binocular viewing. Stimuli
were H, O, T and V letters created by adding or multiplying a luminance
modulation function to a binary white noise carrier to create LM and CM noise
letters, respectively. Resolution thresholds, determined using a
2-down-1-up staircase procedure, were lower for LM, than for CM,
stimuli in both monocular and binocular viewing conditions (p<0.05).
Binocular summation ratio for CM noise letters was significantly
higher than that for LM noise letters (p<0.05) but
declined rapidly with increasing age. For the youngest age group
(20-29 years old), binocular resolution threshold was 39% better
(~1.5-line improvement on the clinical letter chart) than monocular
resolution threshold for CM noise letters, but only 15% better (~0.5-line improvement)
when measured with LM noise letters. Binocular performance
for CM noise letters declines at a faster
rate with increasing age compared to that for LM noise
letters. Visual function measurement with contrast-modulated stimuli
might be useful to detect subtle binocular vision anomalies that
may occur in early adulthood, which may be missed if measured with
luminance-based stimuli alone.
Keywords:
Ageing; binocular resolution; contrast-modulated; luminance-modulated;
monocular resolution
ABSTRAK
Rangsangan hingar
modulasi kontras
(CM)
dianggap diproses
lebih tinggi, di kawasan yang mempunyai lebih visual binokular berbanding rangsangan modulasi luminans (LM)
dan keupayaan
untuk mengamatinya mungkin lebih terdedah
kepada penuaan.
Matlamat kajian ini adalah untuk
menentukan ambang
resolusi monokular dan binokular untuk
huruf hingar
LM
dan CM sepanjang
tempoh dewasa.
Ambang resolusi untuk huruf hingar
LM
dan CM telah diukur pada
25 peserta (umur
21-70 tahun) di bawah penglihatan monokular dan binokular. Rangsangan adalah huruf H, O, T dan V yang dicipta dengan menambah atau mendarabkan
fungsi modulasi
luminans kepada pembawa bunyi putih
untuk mewujudkan
huruf hingar LM dan CM. Ambang
resolusi ditentukan menggunakan prosedur tangga 2-turun-1-naik, lebih rendah untuk LM berbanding CM untuk
rangsangan dalam
kedua-dua keadaan pandangan monokular dan binokular (p < 0.05). Nisbah penjumlahan binokular untuk huruf hingar CM adalah jauh lebih
tinggi daripada
untuk huruf hingar
LM
(p < 0.05) tetapi menurun dengan cepat dengan peningkatan
umur. Bagi kumpulan umur bongsu
(20-29 tahun), ambang
resolusi binokular adalah 39% lebih baik (peningkatan garisan ~1.5 dalam carta huruf klinikal) berbanding ambang resolusi monokular untuk huruf hingar
CM,
tetapi hanya
15% lebih baik (peningkatan
garisan ~0.5) apabila
diukur dengan huruf
hingar LM. Prestasi
binokular untuk
huruf hingar CM menurun pada kadar
yang lebih cepat
dengan peningkatan umur berbanding dengan huruf hingar
LM.
Pengukuran fungsi
visual dengan rangsangan modulasi kontras mungkin berguna untuk mengesan anomali visual binokular halus yang mungkin berlaku pada peringkat
awal dewasa,
yang mungkin terlepas pandang jika diukur
dengan berasaskan
luminans sahaja.
Kata kunci: Modulasi kontras; modulasi luminans; penuaan; resolusi binokular; resolusi monocular
RUJUKAN
Baker, C.L. & Mareschal, I. 2001. Processing
of second-order stimuli in the visual cortex. Progress in Brain
Research 134: 171-191.
Bassi, C.J.,
Solomon, K. & Young, D. 1993. Vision in aging and dementia.
Optometry and Vision Science 70(10): 809-813.
Bertone, A., Guy, J. & Faubert, J.
2011. Assessing spatial perception in aging using an adapted Landolt-C technique. Neuroreport
22: 951-955.
Brewer, A.A. & Barton, B. 2012. Effects of healthy aging on human
primary visual cortex. Health 4(9A): 695-702.
Brewer, A. & Barton, B. 2014. Visual cortex in aging and Alzheimer’s
disease: Changes in visual field maps and population receptive fields.
Frontiers in Psychology. https:// www.frontiersin.org/article/10.3389/fpsyg.2014.00074.
Calvert, J., Manahilov, V., Simpson, W.A.
& Parker, D.M. 2005. Human cortical responses to contrast modulations
of visual noise. Vision Research 45(17): 2218-2230.
Chubb, C. & Sperling, G. 1988. Drift-balanced random stimuli:
A general basis for studying non-Fourier motion perception. J.
Opt. Soc. Am. 5(11): 1986-2007.
Chung, S.T.L., Li, R.W. & Levi, D.M. 2006. Identification of
contrast-defined letters benefits from perceptual learning in adults
with amblyopia. Vision Research 46(22): 3853-3861.
Costa, T.L., Nogueira, R.M.T.B.L., Pereira, A.G.F. & Santos, N.A. 2013.
Differential effects of aging on spatial contrast sensitivity to
linear and polar sine-wave gratings. Brazilian Journal of Medical
and Biological Research 46(10): 855-860.
Crossland, M.D., Morland, A.B., Feely, M.P., Von Dem Hagen, E. & Rubin,
G.S. 2008. The effect of age and fixation instability on retinotopic
mapping of primary visual cortex. Investigative Ophthalmology
and Visual Science 49: 3734-3739.
Dosher, B.A. & Lu,
Z.L. 2006. Level and mechanisms of perceptual learning: Learning
first-order luminance and second-order texture objects. Vision
Research 46(12): 1996- 2007.
Ellemberg, D., Lavoie, K.,
Lewis, T.L., Maurer, D., Lepore, F. &
Guillemot, J.P. 2003. Longer VEP latencies and slower reaction times
to the onset of second-order motion than to the onset of first-order
motion. Vision Research. http://doi. org/10.1016/S0042-6989(03)00006-3.
Elliot,
D.B., Yang, K.C.H. & Whitaker, D. 1995. Visual acuity changes
throughout adulthood in normal, healthy eyes: Seeing beyond 6/6.
Optometry and Vision Science 72(3): 186-191.
Elliott,
D.B., Whitaker, D. & Bonette, L. 1990.
Differences in the legibility of letters at contrast threshold using
the Pelli- Robson chart. Ophthalmic and Physiological Optics
10(4): 323-326.
Frisen, L. & Frisen, M. 1981. How good is normal visual acuity? A study
of letter acuity thresholds as a function of age. Albrecht Yon
Graefes Arch Klin. Ophthalmol. 215: 149-157.
Fun,
S.P., Mohidin, N., Kamal, A.A.M., Mohammed,
Z. & Mohd- Ali, B. 2016. Mild cognitive impairment does not affect
pattern electroretinogram in the elderly-a
pilot study. Sains Malaysiana
45(9): 1399-1403.
Habak, C. & Faubert,
J. 2000. Larger effect of aging on the perception of higher-order
stimuli. Vision Research 40(2000): 943-950.
Hairol, M.I., Formankiewicz, M. & Waugh, S.J. 2013. Foveal visual acuity is worse and shows stronger contour interaction
effects for contrast-modulated than luminance-modulated Cs. Visual
Neuroscience 30: 105-120.
Hairol, M.I. & Waugh,
S.J. 2010. Lateral facilitation revealed dichoptically
for luminance-modulated and contrast-modulated stimuli. Vision
Research 50(23): 2530-2542.
Larsson,
J., Landy, M.S. & Heeger,
D.J. 2006. Orientation-selective adaptation to first- and second-order
patterns in human visual cortex. Journal of Neurophysiology 95:
862- 881.
Mohammed,
Z., Mansor, S.Z. & Mohamed Akhir,
S. 2016. Refractive error and visual acuity of elderly Chinese in
Selangor and Johor, Malaysia. Sains
Malaysiana 45(9): 1393-1398.
Ng,
T.P. 2016. Cognitive health of older persons in longitudinal ageing
cohort studies. Sains Malaysiana
45(9): 1351-1355.
Schofield,
A.J. & Georgeson, M.A. 1999. Sensitivity
to modulations of luminance and contrast in visual white noise:
Separate mechanisms with similar behaviour.
Vision Research 39(16): 2697-2716.
Schofield,
A.J. & Georgeson, M.A. 2003. Sensitivity
to contrast modulation: The spatial frequency dependence of second-order
vision. Vision Research 43: 243-259.
Shen,
Y. 2013. Comparing adaptive procedures for estimating the psychometric
function for an auditory gap detection task. Atten
Percept. Psychophys. 75(4): 771-780.
Smith,
A.T. & Ledgeway, T. 1997. Separate
detection of moving luminance and contrast modulations: Fact or
Artifact ? Vision Research 37(1):
45-62.
Sukumar, S. & Waugh,
S.J. 2007. Separate first- and second-order processing is supported
by spatial summation estimates at the fovea and eccentrically. Vision
Research 47: 581-596.
Tanaka,
H. & Ohzawa, I. 2006. Neural basis
for stereopsis from second-order contrast cues. Journal of Neuroscience
26(16): 4370-4382.
Tang,
Y. & Zhou, Y. 2009. Age-related decline of contrast sensitivity
for second-order stimuli: Earlier onset, but slower progression,
than for first-order stimuli. Journal of Vision 9: 18.
Waugh,
S.J., Formankiewicz, M.A., Ahmad, N. &
Hairol, M.I. 2010. Effects of dioptric blur on foveal acuity and contour interaction for noisy Cs. Journal
of Vision 10(7): 1330.
Woi, P.J., Kaur, S., Waugh, S.J. &
Hairol, M.I. 2016. Visual acuity measured
with luminance-modulated and contrast-modulated letter stimuli in
young adults and adults above 50 years old. F1000Research 5:
1961.
Wong,
E.H., Levi, D.M. & McGraw, P.V. 2005. Spatial interactions reveal
inhibitory cortical networks in human amblyopia. Vision Research
45(21): 2810-2819.
*Pengarang untuk surat-menyurat; email: izzuddin.hairol@ukm.edu.my
|