Sains Malaysiana 48(12)(2019): 2777–2785 
              http://dx.doi.org/10.17576/jsm-2019-4812-19 
                 
            
               
            
            Adaptive Smoothness
              Constraint Image Multilevel Fuzzy Enhancement Algorithm
              
            
              (Algoritma Peningkatan 
                Kabur Imej Berbilang Paras Kelancaran Kekangan Mudah Suai)  
                
            
               
            
            XI CHU1, ZHIXIANG ZHOU1*, CHAOSHAN YANG2 & XIAOJU XIANG1
              
            
            
               
            
            1School
              of Civil Engineering & Department of State Key Laboratory Breeding, Base of
              Mountain Bridge Tunnel Engineering, Chongqing Jiaotong University, Chongqing,
              400074, China
              
            
            
               
            
            2Department
              of Military Installations, Department of Army Logistics University of PLA,
              Chongqing, 401331, China
              
            
            
               
            
            Diserahkan: 21
              Februari 2019/Diterima: 23 Disember 2019
              
            
            
               
            
            ABSTRACT
              
            
            For the problems of poor enhancement effect and long time
              consuming of the traditional algorithm, an adaptive smoothness constraint image
              multilevel fuzzy enhancement algorithm based on secondary color-to-grayscale
              conversion is proposed. By using fuzzy set theory and generalized fuzzy set
              theory, a new linear generalized fuzzy operator transformation is carried out
              to obtain a new linear generalized fuzzy operator. By using linear generalized
              membership transformation and inverse transformation, secondary
              color-to-grayscale conversion of adaptive smoothness constraint image is performed.
              Combined with generalized fuzzy operator, the region contrast fuzzy enhancement
              of adaptive smoothness constraint image is realized, and image multilevel fuzzy
              enhancement is realized. Experimental results show that the fuzzy degree of the
              image is reduced by the improved algorithm, and the clarity of the adaptive
              smoothness constraint image is improved effectively. The time consuming is
              short, and it has some advantages.
              
            
            Keywords: Adaptive; fuzzy enhancement; image; multilevel;
              smoothness constraint
              
            
            
               
            
            ABSTRAK
              
            
              Disebabkan masalah kesan peningkatan yang lemah dan masa yang panjang 
                oleh algoritma tradisi, satu cadangan algoritma peningkatan kabur 
                imej berbilang paras kelancaran kekangan mudah suai berdasarkan 
                penukaran sekunder warna kepada skala kelabu dicadangkan. Dengan 
                menggunakan teori set kabur dan teori set kabur teritlak, transformasi 
                pengendali kabur yang baru telah dijalankan untuk mendapatkan 
                operator kabur linear yang baru. Dengan menggunakan transformasi 
                keahlian linear teritlak dan transformasi songsang, penukaran 
                sekunder warna kepada skala kelabu bagi imej kekangan mudah suai 
                dijalankan. Digabungkan dengan operator kabur teritlak, rantau 
                kontras peningkatan kabur imej kekangan mudah suai direalisasikan 
                dan peningkatan imej dalam multiparas direalisasikan. Hasil uji 
                kaji menunjukkan bahawa imej tahap kabur dikurangkan oleh algoritma 
                yang lebih baik dan kejelasan imej kelancaran kekangan mudah suai 
                diperbaiki dengan berkesan. Masa yang diperlukan singkat dan ia 
                mempunyai beberapa kelebihan.  
              Kata kunci: 
                Imej; kekangan yang tidak rata; berbilang paras; peningkatan 
                kabur; penyesuaian  
            RUJUKAN
              
            
              Abutaleb, 
                A.S. 1989. Automatic thresholding of gray level pictures using 
                two-dimensional entropy. Comput. Vision Graphics Image Process 
                47: 22-32.
              Bao, D.M. 2017. Design 
                and application of visualization software for computer remote 
                image definition processing. Modern Electronic Technology 40(19): 
                98-101. 
              Cai, Z.P., Niu, C., Zhang, X.Y., et al. 2016. Target tracking algorithm 
                based on fuzzy adaptive ckf. Electro-optic 
                and Control 10: 8-12. 
              He, F.J., Li, Q.W., 
                Han, H., et al. 2017. Adaptive enhancement of borehole images 
                based on homomorphic filtering and curve let transform. Sensors 
                and Microsystems 36(8): 145-148. 
              He, R.J., Fan, Y.Y., 
                Wang, Z.Y., et al. 2016. A new method for single fog image restoration 
                based on non-local total variation regularization optimization. 
                Journal of Electronics and Information Technology 38(10): 
                2509-2514. 
              He, W. & Dong, 
                Y. 2018. Adaptive fuzzy neural network control for a constrained 
                robot using impedance learning. IEEE Transactions on Neural 
                Networks & Learning Systems 29(4): 1174-1186. 
              Huang, W.G., Zhang, 
                Y.P., Bi, W., et al. 2018. Low illumination image decomposition 
                and detail enhancement under gradient sparse and least square 
                constraints. Acta Electronica Sinica 
                46(2): 424-432. 
              Huang, S., Li, Z., 
                Li, F., et al. 2016. Fast fuzzy clustering image segmentation 
                based on improved particle swarm optimization and adaptive filtering. 
                Computer Measurement and Control 24(4): 171-173. 
              Jobson, D., 
                Rahman, Z. & Woodell. G. 1997. A multiscale Retinex for bridging 
                the gap between color images and the human observation of scenes. 
                IEEE Trans. Image Processing 6(7).
              Ju, G., Yuan, L., Liu, 
                X.Y., et al. 2016. Adaptive image enhancement method based on 
                multi-algorithm fusion. Acta 
                Photonica Sinica 45(12): 136-144. 
                
              Kong, L., He, W., 
                Yang, C., et al. 2019. Adaptive fuzzy control for coordinated 
                multiple robots with constraint using impedance learning. IEEE 
                Transactions on Cybernetics 49(8): 3052- 3063.
              Land, E.H. 1964. 
                The Retinex. American Scientist 52: 247-264. 
              Li, L. & Qiao, W.Z. 2017. Research on edge detection of irregular defects 
                based on fuzzy enhancement algorithm. Sensor World 23(9): 
                13-16. 
              Li, T., He, X.H., 
                Qing, L.B., et al. 2017. Super - Resolution reconstruction of 
                noisy images based on adaptive block set cut a priori. Acta 
                Automatica Sinica 
                43(5): 765-777. 
              Li, X. & Liu, 
                Z.Y. 2016. Research on fuzzy adaptive ant colony algorithm based 
                on cloud model. Computer Engineering and Application 52(2): 
                24-27. 
              Li, Y.X., Zhao, M. 
                & Sun, D.H. 2018. A fast image enhancement algorithm for highway 
                tunnel pedestrian detection. Conference: 2018 Chinese Control 
                and Decision Conference (CCDC). pp. 3485-3490. 
              Liu, Z. 2018. What 
                is the future of solar energy? Economic and policy barriers. Energy 
                Sources Part B-Economics Planning and Policy 13(3): 169-172. 
                
              Liu, J.J. 2017. Fast 
                enhancement simulation of fuzzy region of low-dimensional image 
                in fog environment. Computer Simulation 34(2): 397-400. 
                
              Liu, J., Ni, B. & 
                Hao, J.B. 2017. Minimum energy constrained 
                image interaction estimation deblurring 
                algorithm. Computer Engineering and Design 42(12): 3402-3407. 
                
              Lu, R., Song, X.X., 
                Li, Q., et al. 2017. Face image processing based on fuzzy algorithm. 
                Shandong Industrial Technology 12(13): 261-261.
              Meylan, L. & 
                Susstrunk, S. 2006. High dynamic range image rendering with a 
                retinex-based adaptive filter. IEEE Trans. Image Processing 
                15(9).
              Pal, S.K. & King, 
                R. 1981. Image enhancement using smoothing with fuzzy sets. IEEE 
                Trans. Sys., Man, and Cyber 11(7): 494-500.
              Pal, S.K. & King, 
                R. 1980. Image enhancement using fuzzy set. Electron. Lett. 
                16: 376-378. 
              Prabha, D.S. & Kumar, J.S. 2017 An efficient 
                image contrast enhancement algorithm using genetic algorithm and 
                fuzzy intensification operator. Wireless Personal Communications 
                93(1): 223-244.
              Quan, Y.Q., Li, T.J., Deng, J.X., et al. 
                2016. Adaptive image enhancement algorithm based on fuzzy set 
                and nonlinear gain. Computer Application Research 1: 311-315. 
                
              Ramos Gandolfi, O.R., Goncalves, F.G.R., 
                Bonomo, F.R.C. & Fontan, I.R.D.C. 
                2018. Sorption equilibrium and kinetics of thin-layer drying of 
                green bell peppers. Emirates Journal of Food and Agriculture 
                30(2): 137-143. 
              Ren, K.Q., Hu, M.Y. 
                & Yu, L.J. 2017. Adaptive fuzzy image registration algorithm 
                based on kaze. Journal of Electronic Measurement and Instrumentation 
                31(4): 559-565. 
              Sanchez Camacho, 
                E.A. & Martinez Morales, M. 2017. Estimation of the volume 
                of underground water for a coastal wetland. Revista 
                Internacional De Contaminacion Ambiental 33(SI): 65-76. 
              Shakeri, M., Dezfoulian, 
                M.H., Khotanlou, H., Barati, A.H. & Masoumi, Y. 2017. Image 
                contrast enhancement using fuzzy clustering with adaptive cluster 
                parameter and sub-histogram equalization. Digital Signal Processing 
                62: 224-237. 
              Song, R., Da, L.I. 
                & Wang, X. 2017. Low illumination image enhancement algorithm 
                based on HSI color space. Journal of Graphics 38(2): 217-223. 
                
              Sun, W., Dong, E. 
                & Qiao, H. 2017. A fuzzy energy-based 
                active contour model with adaptive contrast constraint for local 
                segmentation. Signal Image & Video Processing 12(12): 
                1-8. 
              Wang, B.P., Ma, J.J., 
                Han, Z.X., Zhang, Y., Fang, Y. & Ge, Y.M. 2018. Adaptive image 
                enhancement algorithm based on fuzzy entropy and human visual 
                characteristics. Systems Engineering and Electronic Technology 
                29(5): 1079-1088. 
              Wang, F.P., Wang, 
                W.X., Yang, N., et al. 2017. Urban traffic image enhancement based 
                on improved retinex. Journal of Transportation Systems Engineering 
                and Information Technology 2017(5): 53-59. 
              Wang, H. & Zheng, 
                B.G. 2016. Image reconstruction algorithm based on weighted TV/sar joint prior and minimum linear KL divergence. Measurement 
                and Control Technology 35(1): 38-42. 
              Wang, K. 2017. Research 
                of enhancement algorithm for infrared image based on the fuzzy 
                set theory. IOP Conference Series Earth and Environmental Science 
                69(1): 012180. 
              Yi, S.L., Chen, Y. 
                & He, J.F. 2016. Fourth - Order equation image smoothing method 
                for establishing a novel edge leakage compensation mechanism. 
                Acta Electronica Sinica 
                44(4): 813-820. 
              Yue, G.W., Lu, X.S., 
                Liu, B., et al. 2016. Wellbore disease identification method based 
                on improved active contour model. Coal Engineering 48(5): 
                115-118.
              Zadeh, L.A. 1965. 
                Fuzzy Sets. Inform. Control 8: 338-353. 
                
              Zhang,
              X., Zhao, X.F., Shi, Y.L., et al. 2017. Adaptive merge histogram stretch
              enhancement algorithm for UUV sea surface infrared reconnaissance image. Applied
                Science and Technology 43(6): 1-4.
              
            
            Zhou,
              F., Jia, Z., Yang, J., et al. 2017. Method of improved fuzzy contrast combined
              adaptive threshold in NSCT for medical image enhancement. BioMed Research
                International 10: 3969152.
              
            
            Zong,
              H., Cao, Y. & Liu, Z. 2018. Energy security in group of seven (g7): A
              quantitative approach for renewable energy policy. Energy Sources Part
                B-Economics Planning and Policy 13(3): 173-175.
              
            
            
               
            
              *Pengarang untuk surat-menyurat; email: 
                jfnchuxi@yahoo.com