Sains Malaysiana 48(12)(2019): 2777–2785

http://dx.doi.org/10.17576/jsm-2019-4812-19

 

Adaptive Smoothness Constraint Image Multilevel Fuzzy Enhancement Algorithm

(Algoritma Peningkatan Kabur Imej Berbilang Paras Kelancaran Kekangan Mudah Suai)

 

XI CHU1, ZHIXIANG ZHOU1*, CHAOSHAN YANG2 & XIAOJU XIANG1

 

1School of Civil Engineering & Department of State Key Laboratory Breeding, Base of Mountain Bridge Tunnel Engineering, Chongqing Jiaotong University, Chongqing, 400074, China

 

2Department of Military Installations, Department of Army Logistics University of PLA, Chongqing, 401331, China

 

Diserahkan: 21 Februari 2019/Diterima: 23 Disember 2019

 

ABSTRACT

For the problems of poor enhancement effect and long time consuming of the traditional algorithm, an adaptive smoothness constraint image multilevel fuzzy enhancement algorithm based on secondary color-to-grayscale conversion is proposed. By using fuzzy set theory and generalized fuzzy set theory, a new linear generalized fuzzy operator transformation is carried out to obtain a new linear generalized fuzzy operator. By using linear generalized membership transformation and inverse transformation, secondary color-to-grayscale conversion of adaptive smoothness constraint image is performed. Combined with generalized fuzzy operator, the region contrast fuzzy enhancement of adaptive smoothness constraint image is realized, and image multilevel fuzzy enhancement is realized. Experimental results show that the fuzzy degree of the image is reduced by the improved algorithm, and the clarity of the adaptive smoothness constraint image is improved effectively. The time consuming is short, and it has some advantages.

Keywords: Adaptive; fuzzy enhancement; image; multilevel; smoothness constraint

 

ABSTRAK

Disebabkan masalah kesan peningkatan yang lemah dan masa yang panjang oleh algoritma tradisi, satu cadangan algoritma peningkatan kabur imej berbilang paras kelancaran kekangan mudah suai berdasarkan penukaran sekunder warna kepada skala kelabu dicadangkan. Dengan menggunakan teori set kabur dan teori set kabur teritlak, transformasi pengendali kabur yang baru telah dijalankan untuk mendapatkan operator kabur linear yang baru. Dengan menggunakan transformasi keahlian linear teritlak dan transformasi songsang, penukaran sekunder warna kepada skala kelabu bagi imej kekangan mudah suai dijalankan. Digabungkan dengan operator kabur teritlak, rantau kontras peningkatan kabur imej kekangan mudah suai direalisasikan dan peningkatan imej dalam multiparas direalisasikan. Hasil uji kaji menunjukkan bahawa imej tahap kabur dikurangkan oleh algoritma yang lebih baik dan kejelasan imej kelancaran kekangan mudah suai diperbaiki dengan berkesan. Masa yang diperlukan singkat dan ia mempunyai beberapa kelebihan.

Kata kunci: Imej; kekangan yang tidak rata; berbilang paras; peningkatan kabur; penyesuaian

RUJUKAN

Abutaleb, A.S. 1989. Automatic thresholding of gray level pictures using two-dimensional entropy. Comput. Vision Graphics Image Process 47: 22-32.

Bao, D.M. 2017. Design and application of visualization software for computer remote image definition processing. Modern Electronic Technology 40(19): 98-101.

Cai, Z.P., Niu, C., Zhang, X.Y., et al. 2016. Target tracking algorithm based on fuzzy adaptive ckf. Electro-optic and Control 10: 8-12.

He, F.J., Li, Q.W., Han, H., et al. 2017. Adaptive enhancement of borehole images based on homomorphic filtering and curve let transform. Sensors and Microsystems 36(8): 145-148.

He, R.J., Fan, Y.Y., Wang, Z.Y., et al. 2016. A new method for single fog image restoration based on non-local total variation regularization optimization. Journal of Electronics and Information Technology 38(10): 2509-2514.

He, W. & Dong, Y. 2018. Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Transactions on Neural Networks & Learning Systems 29(4): 1174-1186.

Huang, W.G., Zhang, Y.P., Bi, W., et al. 2018. Low illumination image decomposition and detail enhancement under gradient sparse and least square constraints. Acta Electronica Sinica 46(2): 424-432.

Huang, S., Li, Z., Li, F., et al. 2016. Fast fuzzy clustering image segmentation based on improved particle swarm optimization and adaptive filtering. Computer Measurement and Control 24(4): 171-173.

Jobson, D., Rahman, Z. & Woodell. G. 1997. A multiscale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Processing 6(7).

Ju, G., Yuan, L., Liu, X.Y., et al. 2016. Adaptive image enhancement method based on multi-algorithm fusion. Acta Photonica Sinica 45(12): 136-144.

Kong, L., He, W., Yang, C., et al. 2019. Adaptive fuzzy control for coordinated multiple robots with constraint using impedance learning. IEEE Transactions on Cybernetics 49(8): 3052- 3063.

Land, E.H. 1964. The Retinex. American Scientist 52: 247-264.

Li, L. & Qiao, W.Z. 2017. Research on edge detection of irregular defects based on fuzzy enhancement algorithm. Sensor World 23(9): 13-16.

Li, T., He, X.H., Qing, L.B., et al. 2017. Super - Resolution reconstruction of noisy images based on adaptive block set cut a priori. Acta Automatica Sinica 43(5): 765-777.

Li, X. & Liu, Z.Y. 2016. Research on fuzzy adaptive ant colony algorithm based on cloud model. Computer Engineering and Application 52(2): 24-27.

Li, Y.X., Zhao, M. & Sun, D.H. 2018. A fast image enhancement algorithm for highway tunnel pedestrian detection. Conference: 2018 Chinese Control and Decision Conference (CCDC). pp. 3485-3490.

Liu, Z. 2018. What is the future of solar energy? Economic and policy barriers. Energy Sources Part B-Economics Planning and Policy 13(3): 169-172.

Liu, J.J. 2017. Fast enhancement simulation of fuzzy region of low-dimensional image in fog environment. Computer Simulation 34(2): 397-400.

Liu, J., Ni, B. & Hao, J.B. 2017. Minimum energy constrained image interaction estimation deblurring algorithm. Computer Engineering and Design 42(12): 3402-3407.

Lu, R., Song, X.X., Li, Q., et al. 2017. Face image processing based on fuzzy algorithm. Shandong Industrial Technology 12(13): 261-261.

Meylan, L. & Susstrunk, S. 2006. High dynamic range image rendering with a retinex-based adaptive filter. IEEE Trans. Image Processing 15(9).

Pal, S.K. & King, R. 1981. Image enhancement using smoothing with fuzzy sets. IEEE Trans. Sys., Man, and Cyber 11(7): 494-500.

Pal, S.K. & King, R. 1980. Image enhancement using fuzzy set. Electron. Lett. 16: 376-378.

Prabha, D.S. & Kumar, J.S. 2017 An efficient image contrast enhancement algorithm using genetic algorithm and fuzzy intensification operator. Wireless Personal Communications 93(1): 223-244.

Quan, Y.Q., Li, T.J., Deng, J.X., et al. 2016. Adaptive image enhancement algorithm based on fuzzy set and nonlinear gain. Computer Application Research 1: 311-315.

Ramos Gandolfi, O.R., Goncalves, F.G.R., Bonomo, F.R.C. & Fontan, I.R.D.C. 2018. Sorption equilibrium and kinetics of thin-layer drying of green bell peppers. Emirates Journal of Food and Agriculture 30(2): 137-143.

Ren, K.Q., Hu, M.Y. & Yu, L.J. 2017. Adaptive fuzzy image registration algorithm based on kaze. Journal of Electronic Measurement and Instrumentation 31(4): 559-565.

Sanchez Camacho, E.A. & Martinez Morales, M. 2017. Estimation of the volume of underground water for a coastal wetland. Revista Internacional De Contaminacion Ambiental 33(SI): 65-76.

Shakeri, M., Dezfoulian, M.H., Khotanlou, H., Barati, A.H. & Masoumi, Y. 2017. Image contrast enhancement using fuzzy clustering with adaptive cluster parameter and sub-histogram equalization. Digital Signal Processing 62: 224-237.

Song, R., Da, L.I. & Wang, X. 2017. Low illumination image enhancement algorithm based on HSI color space. Journal of Graphics 38(2): 217-223.

Sun, W., Dong, E. & Qiao, H. 2017. A fuzzy energy-based active contour model with adaptive contrast constraint for local segmentation. Signal Image & Video Processing 12(12): 1-8.

Wang, B.P., Ma, J.J., Han, Z.X., Zhang, Y., Fang, Y. & Ge, Y.M. 2018. Adaptive image enhancement algorithm based on fuzzy entropy and human visual characteristics. Systems Engineering and Electronic Technology 29(5): 1079-1088.

Wang, F.P., Wang, W.X., Yang, N., et al. 2017. Urban traffic image enhancement based on improved retinex. Journal of Transportation Systems Engineering and Information Technology 2017(5): 53-59.

Wang, H. & Zheng, B.G. 2016. Image reconstruction algorithm based on weighted TV/sar joint prior and minimum linear KL divergence. Measurement and Control Technology 35(1): 38-42.

Wang, K. 2017. Research of enhancement algorithm for infrared image based on the fuzzy set theory. IOP Conference Series Earth and Environmental Science 69(1): 012180.

Yi, S.L., Chen, Y. & He, J.F. 2016. Fourth - Order equation image smoothing method for establishing a novel edge leakage compensation mechanism. Acta Electronica Sinica 44(4): 813-820.

Yue, G.W., Lu, X.S., Liu, B., et al. 2016. Wellbore disease identification method based on improved active contour model. Coal Engineering 48(5): 115-118.

Zadeh, L.A. 1965. Fuzzy Sets. Inform. Control 8: 338-353.

Zhang, X., Zhao, X.F., Shi, Y.L., et al. 2017. Adaptive merge histogram stretch enhancement algorithm for UUV sea surface infrared reconnaissance image. Applied Science and Technology 43(6): 1-4.

Zhou, F., Jia, Z., Yang, J., et al. 2017. Method of improved fuzzy contrast combined adaptive threshold in NSCT for medical image enhancement. BioMed Research International 10: 3969152.

Zong, H., Cao, Y. & Liu, Z. 2018. Energy security in group of seven (g7): A quantitative approach for renewable energy policy. Energy Sources Part B-Economics Planning and Policy 13(3): 173-175.

 

*Pengarang untuk surat-menyurat; email: jfnchuxi@yahoo.com

 

 

sebelumnya