Sains Malaysiana 48(12)(2019): 2777–2785
http://dx.doi.org/10.17576/jsm-2019-4812-19
Adaptive Smoothness
Constraint Image Multilevel Fuzzy Enhancement Algorithm
(Algoritma Peningkatan
Kabur Imej Berbilang Paras Kelancaran Kekangan Mudah Suai)
XI CHU1, ZHIXIANG ZHOU1*, CHAOSHAN YANG2 & XIAOJU XIANG1
1School
of Civil Engineering & Department of State Key Laboratory Breeding, Base of
Mountain Bridge Tunnel Engineering, Chongqing Jiaotong University, Chongqing,
400074, China
2Department
of Military Installations, Department of Army Logistics University of PLA,
Chongqing, 401331, China
Diserahkan: 21
Februari 2019/Diterima: 23 Disember 2019
ABSTRACT
For the problems of poor enhancement effect and long time
consuming of the traditional algorithm, an adaptive smoothness constraint image
multilevel fuzzy enhancement algorithm based on secondary color-to-grayscale
conversion is proposed. By using fuzzy set theory and generalized fuzzy set
theory, a new linear generalized fuzzy operator transformation is carried out
to obtain a new linear generalized fuzzy operator. By using linear generalized
membership transformation and inverse transformation, secondary
color-to-grayscale conversion of adaptive smoothness constraint image is performed.
Combined with generalized fuzzy operator, the region contrast fuzzy enhancement
of adaptive smoothness constraint image is realized, and image multilevel fuzzy
enhancement is realized. Experimental results show that the fuzzy degree of the
image is reduced by the improved algorithm, and the clarity of the adaptive
smoothness constraint image is improved effectively. The time consuming is
short, and it has some advantages.
Keywords: Adaptive; fuzzy enhancement; image; multilevel;
smoothness constraint
ABSTRAK
Disebabkan masalah kesan peningkatan yang lemah dan masa yang panjang
oleh algoritma tradisi, satu cadangan algoritma peningkatan kabur
imej berbilang paras kelancaran kekangan mudah suai berdasarkan
penukaran sekunder warna kepada skala kelabu dicadangkan. Dengan
menggunakan teori set kabur dan teori set kabur teritlak, transformasi
pengendali kabur yang baru telah dijalankan untuk mendapatkan
operator kabur linear yang baru. Dengan menggunakan transformasi
keahlian linear teritlak dan transformasi songsang, penukaran
sekunder warna kepada skala kelabu bagi imej kekangan mudah suai
dijalankan. Digabungkan dengan operator kabur teritlak, rantau
kontras peningkatan kabur imej kekangan mudah suai direalisasikan
dan peningkatan imej dalam multiparas direalisasikan. Hasil uji
kaji menunjukkan bahawa imej tahap kabur dikurangkan oleh algoritma
yang lebih baik dan kejelasan imej kelancaran kekangan mudah suai
diperbaiki dengan berkesan. Masa yang diperlukan singkat dan ia
mempunyai beberapa kelebihan.
Kata kunci:
Imej; kekangan yang tidak rata; berbilang paras; peningkatan
kabur; penyesuaian
RUJUKAN
Abutaleb,
A.S. 1989. Automatic thresholding of gray level pictures using
two-dimensional entropy. Comput. Vision Graphics Image Process
47: 22-32.
Bao, D.M. 2017. Design
and application of visualization software for computer remote
image definition processing. Modern Electronic Technology 40(19):
98-101.
Cai, Z.P., Niu, C., Zhang, X.Y., et al. 2016. Target tracking algorithm
based on fuzzy adaptive ckf. Electro-optic
and Control 10: 8-12.
He, F.J., Li, Q.W.,
Han, H., et al. 2017. Adaptive enhancement of borehole images
based on homomorphic filtering and curve let transform. Sensors
and Microsystems 36(8): 145-148.
He, R.J., Fan, Y.Y.,
Wang, Z.Y., et al. 2016. A new method for single fog image restoration
based on non-local total variation regularization optimization.
Journal of Electronics and Information Technology 38(10):
2509-2514.
He, W. & Dong,
Y. 2018. Adaptive fuzzy neural network control for a constrained
robot using impedance learning. IEEE Transactions on Neural
Networks & Learning Systems 29(4): 1174-1186.
Huang, W.G., Zhang,
Y.P., Bi, W., et al. 2018. Low illumination image decomposition
and detail enhancement under gradient sparse and least square
constraints. Acta Electronica Sinica
46(2): 424-432.
Huang, S., Li, Z.,
Li, F., et al. 2016. Fast fuzzy clustering image segmentation
based on improved particle swarm optimization and adaptive filtering.
Computer Measurement and Control 24(4): 171-173.
Jobson, D.,
Rahman, Z. & Woodell. G. 1997. A multiscale Retinex for bridging
the gap between color images and the human observation of scenes.
IEEE Trans. Image Processing 6(7).
Ju, G., Yuan, L., Liu,
X.Y., et al. 2016. Adaptive image enhancement method based on
multi-algorithm fusion. Acta
Photonica Sinica 45(12): 136-144.
Kong, L., He, W.,
Yang, C., et al. 2019. Adaptive fuzzy control for coordinated
multiple robots with constraint using impedance learning. IEEE
Transactions on Cybernetics 49(8): 3052- 3063.
Land, E.H. 1964.
The Retinex. American Scientist 52: 247-264.
Li, L. & Qiao, W.Z. 2017. Research on edge detection of irregular defects
based on fuzzy enhancement algorithm. Sensor World 23(9):
13-16.
Li, T., He, X.H.,
Qing, L.B., et al. 2017. Super - Resolution reconstruction of
noisy images based on adaptive block set cut a priori. Acta
Automatica Sinica
43(5): 765-777.
Li, X. & Liu,
Z.Y. 2016. Research on fuzzy adaptive ant colony algorithm based
on cloud model. Computer Engineering and Application 52(2):
24-27.
Li, Y.X., Zhao, M.
& Sun, D.H. 2018. A fast image enhancement algorithm for highway
tunnel pedestrian detection. Conference: 2018 Chinese Control
and Decision Conference (CCDC). pp. 3485-3490.
Liu, Z. 2018. What
is the future of solar energy? Economic and policy barriers. Energy
Sources Part B-Economics Planning and Policy 13(3): 169-172.
Liu, J.J. 2017. Fast
enhancement simulation of fuzzy region of low-dimensional image
in fog environment. Computer Simulation 34(2): 397-400.
Liu, J., Ni, B. &
Hao, J.B. 2017. Minimum energy constrained
image interaction estimation deblurring
algorithm. Computer Engineering and Design 42(12): 3402-3407.
Lu, R., Song, X.X.,
Li, Q., et al. 2017. Face image processing based on fuzzy algorithm.
Shandong Industrial Technology 12(13): 261-261.
Meylan, L. &
Susstrunk, S. 2006. High dynamic range image rendering with a
retinex-based adaptive filter. IEEE Trans. Image Processing
15(9).
Pal, S.K. & King,
R. 1981. Image enhancement using smoothing with fuzzy sets. IEEE
Trans. Sys., Man, and Cyber 11(7): 494-500.
Pal, S.K. & King,
R. 1980. Image enhancement using fuzzy set. Electron. Lett.
16: 376-378.
Prabha, D.S. & Kumar, J.S. 2017 An efficient
image contrast enhancement algorithm using genetic algorithm and
fuzzy intensification operator. Wireless Personal Communications
93(1): 223-244.
Quan, Y.Q., Li, T.J., Deng, J.X., et al.
2016. Adaptive image enhancement algorithm based on fuzzy set
and nonlinear gain. Computer Application Research 1: 311-315.
Ramos Gandolfi, O.R., Goncalves, F.G.R.,
Bonomo, F.R.C. & Fontan, I.R.D.C.
2018. Sorption equilibrium and kinetics of thin-layer drying of
green bell peppers. Emirates Journal of Food and Agriculture
30(2): 137-143.
Ren, K.Q., Hu, M.Y.
& Yu, L.J. 2017. Adaptive fuzzy image registration algorithm
based on kaze. Journal of Electronic Measurement and Instrumentation
31(4): 559-565.
Sanchez Camacho,
E.A. & Martinez Morales, M. 2017. Estimation of the volume
of underground water for a coastal wetland. Revista
Internacional De Contaminacion Ambiental 33(SI): 65-76.
Shakeri, M., Dezfoulian,
M.H., Khotanlou, H., Barati, A.H. & Masoumi, Y. 2017. Image
contrast enhancement using fuzzy clustering with adaptive cluster
parameter and sub-histogram equalization. Digital Signal Processing
62: 224-237.
Song, R., Da, L.I.
& Wang, X. 2017. Low illumination image enhancement algorithm
based on HSI color space. Journal of Graphics 38(2): 217-223.
Sun, W., Dong, E.
& Qiao, H. 2017. A fuzzy energy-based
active contour model with adaptive contrast constraint for local
segmentation. Signal Image & Video Processing 12(12):
1-8.
Wang, B.P., Ma, J.J.,
Han, Z.X., Zhang, Y., Fang, Y. & Ge, Y.M. 2018. Adaptive image
enhancement algorithm based on fuzzy entropy and human visual
characteristics. Systems Engineering and Electronic Technology
29(5): 1079-1088.
Wang, F.P., Wang,
W.X., Yang, N., et al. 2017. Urban traffic image enhancement based
on improved retinex. Journal of Transportation Systems Engineering
and Information Technology 2017(5): 53-59.
Wang, H. & Zheng,
B.G. 2016. Image reconstruction algorithm based on weighted TV/sar joint prior and minimum linear KL divergence. Measurement
and Control Technology 35(1): 38-42.
Wang, K. 2017. Research
of enhancement algorithm for infrared image based on the fuzzy
set theory. IOP Conference Series Earth and Environmental Science
69(1): 012180.
Yi, S.L., Chen, Y.
& He, J.F. 2016. Fourth - Order equation image smoothing method
for establishing a novel edge leakage compensation mechanism.
Acta Electronica Sinica
44(4): 813-820.
Yue, G.W., Lu, X.S.,
Liu, B., et al. 2016. Wellbore disease identification method based
on improved active contour model. Coal Engineering 48(5):
115-118.
Zadeh, L.A. 1965.
Fuzzy Sets. Inform. Control 8: 338-353.
Zhang,
X., Zhao, X.F., Shi, Y.L., et al. 2017. Adaptive merge histogram stretch
enhancement algorithm for UUV sea surface infrared reconnaissance image. Applied
Science and Technology 43(6): 1-4.
Zhou,
F., Jia, Z., Yang, J., et al. 2017. Method of improved fuzzy contrast combined
adaptive threshold in NSCT for medical image enhancement. BioMed Research
International 10: 3969152.
Zong,
H., Cao, Y. & Liu, Z. 2018. Energy security in group of seven (g7): A
quantitative approach for renewable energy policy. Energy Sources Part
B-Economics Planning and Policy 13(3): 173-175.
*Pengarang untuk surat-menyurat; email:
jfnchuxi@yahoo.com