Sains Malaysiana 48(12)(2019):
2787–2796
http://dx.doi.org/10.17576/jsm-2019-4812-20
A Distance Measure of
Interval-valued Belief Structures
(Suatu Jarak Pengukuran
Nilai Selang Struktur Kepercayaan)
JUNQIN CAO1,2, XUEYING ZHANG2*
& JIAPENG FENG3
1College
of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024,
China
2School
of Electronic Information Engineering, Taiyuan University of Science and
Technology, Taiyuan, 030024, China
3Tai
Yuan Institute of China Coal Technology and Engineering Group, Taiyuan, 030024,
China
Diserahkan: 21
Februari 2019/Diterima: 23 Disember 2019
ABSTRACT
Interval-valued belief structures are generalized from belief
function theory, in terms of basic belief assignments from crisp to interval
numbers. The distance measure has long been an essential tool in belief
function theory, such as conflict evidence combinations, clustering analysis,
belief function and approximation. Researchers have paid much attention and
proposed many kinds of distance measures. However, few works have addressed
distance measures of interval-valued belief structures up. In this paper, we
propose a method to measure the distance of interval belief functions. The
method is based on an interval-valued one-dimensional Hausdorff distance and
Jaccard similarity coefficient. We show and prove its properties of
non-negativity, non-degeneracy, symmetry and triangle inequality. Numerical
examples illustrate the validity of the proposed distance.
Keywords: Distance; Hausdorff distance; Jaccard similarity coefficient;
interval-valued belief structures
ABSTRAK
Nilai selang struktur kepercayaan digeneralisasi daripada teori fungsi
kepercayaan, dari sudut tugasan kepercayaan asas nombor krisp
kepada selang. Jarak pengukuran telah menjadi alat yang penting
dalam teori fungsi kepercayaan, seperti gabungan bukti konflik,
analisis berkelompok, fungsi kepercayaan dan penganggaran. Penyelidik
telah memberi banyak perhatian dan mencadangkan pelbagai jenis
jarak pengukuran. Walau bagaimanapun, beberapa kajian telah membincangkan
jarak pengukuran nilai selang struktur kepercayaan. Dalam kertas
ini, kami mencadangkan kaedah untuk mengukur jarak fungsi selang
kepercayaan. Kaedah ini berdasarkan jarak nilai selang satu dimensi
Hausdorff dan pekali kesamaan Jaccard. Kami tunjuk dan buktikan
sifatnya yang tidak negatif, tidak merosot, simetri dan ketidaksamaan
segitiga. Contoh berangka menunjukkan kesahan jarak yang dicadangkan.
Kata kunci: Jarak; jarak Hausdorff; nilai selang struktur
kepercayaan; pekali kesamaan Jaccard
RUJUKAN
Bauer,
M. 1997. Approximation algorithms and decision making in the Dempster-Shafer
theory of evidence - An empirical study. International Journal of
Approximate Reasoning 17: 217-237.
Bouchard,
M., Jousselme, A.L. & Doré, P.E. 2013. A proof for the positive
definiteness of the Jaccard index matrix. International Journal of
Approximate Reasoning 54: 615-626.
Carrillo
Pedroza, F.R., Soria Aguilar, M.D.J., Sanchez Castillo, M.A., Martinez
Luevanos, A. & Picazo Rodriguez, N.G. 2017. Adsorption of chromium from
steel plating wastewater using blast furnace dust. Revista Internacional De Contaminacion
Ambiental. 33: 591-603.
Cuzzolin,
F. 2011. Lp consonant approximation of belief functions in the mass space. International
Symposium on Imprecise Probability Theories and Applications Innsbruck Austria 22:
420-436.
Cuzzolin,
F. 2008. A geometric approach to the theory of evidence. IEEE Transactions
on Systems Man and Cybernetics Part C - Applications and Reviews 38:
522-534.
de
Carvalho, F.D.T. & Pimentel, J.T. 2012. Partitioning fuzzy clustering
algorithms for interval-valued data based on Hausdorff distances. IEEE
International Conference On Systems, Man, and Cybernetics (SMC), Seoul, South
Korea. pp. 1379-1384.
Dempster,
A.P. 1967. Upper and lower probabilities induced by a multi-valued mapping. Annals
of Mathematical Statistics 38: 325-339.
Deng,
Y., Shi, W.K., Zhu, Z.F. & Liu, Q. 2004. Combining belief functions based
on distance of evidence. Decision Support Systems 38: 489-493.
Denoeux,
T. 1999. Reasoning with imprecise belief structures. International Journal
of Approximate Reasoning 20: 79-111.
Denoeux,
T. 2000. A neural network classifier based on Dempster- Shafer theory. IEEE
Transactions on Systems Man and Cybernetics - Part A Systems and Humans 30:
131-150.
Diaz,
J., Rifqi, M. & Bouchon-Meunier, B. 2006. A similarity measure between
basic belief assignments. Information Fusion: 9th International Conference. pp.
1-6.
Fallatah,
M.M., Kavil, Y.N., Ibrahim, A.S.A., Orif, M.I., Shaban, Y.A. & Farawati,
R.A. 2018. Hydrographic parameters and distribution of dissolved Cu, Ni, Zn and
nutrients near Jeddah desalination plant. Open Chemistry 16: 246-257.
Fu, C.
& Yang, S.L. 2012. The conjunctive combination of interval-valued belief
structures from dependent sources. International Journal of Approximate
Reasoning 53: 769-785.
Fu, C.
& Yang, S.L. 2011. Analyzing the applicability of Dempster’s rule to the
combination of interval-valued belief structures. Expert Systems with
Applications 38: 4291-4301.
Giang,
P.H. 2015. Decision making under uncertainty comprising complete ignorance and
probability. International Journal of Approximate Reasoning 62: 27-45.
Gower,
J.C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857-871.
Han,
D., Dezert, J. & Yang, Y. 2014. New distance measures of evidence based on
belief intervals. In Belief Functions: Theory and Application. BELIEF 2014.
Lecture Notes in Computer Science, edited by Cuzzolin, F. Switzerland:
Springer. 8764: 432-441.
Han,
D., Dezert, J., Han, C. & Yang, Y. 2011. New dissimilarity measures in
evidence theory. Information Fusion (FUSION), Proceedings of the 14th
International Conference. pp. 1-7.
Hariz,
S.B., Elouedi, Z. & Mellouli, K. 2006. Clustering approach using belief
function theory. Lecture Notes in Computer Science 4183: 162-171.
Huh,
E., Lim, S., Kim, H.G., Ha, S.K., Park, H., Huh, Y. & Oh, M.S. 2018. Ginger
fermented with schizosaccharomyces pombe alleviates memory impairment via protecting
hippocampal neuronal cells in amyloid beta(1-42) plaque injected mice. Food
and Function 9: 171-178.
Jaccard,
P. 1901. Distribution de la Flore Alpine dans le Bassin des Dranses et dans
quelques régions voisines. Bulletin De La Societe Vaudoise Des Sciences
Naturelles 37: 241-272.
Jiang,
W. & Wang, S. 2017. An uncertainty measure for interval-valued evidences. Int.
J. Comput. Commun. Control 12: 631-644.
Jousselme,
A.L. & Maupin, P. 2012. Distances in evidence theory: Comprehensive survey
and generalizations. International Journal of Approximate Reasoning 53:
118-145.
Jousselme,
A.L., Grenier, D. & Bossé, É. 2001. A new distance between two bodies of
evidence. Information Fusion 2: 91-101.
Kaushik,
N. & Chatterjee, N. 2018. Automatic relationship extraction from
agricultural text for ontology construction. Information Processing in
Agriculture 5: 60-73.
Klein,
J., Destercke, S. & Colot, O. 2016. Interpreting evidential distances by
connecting them to partial orders: Application to belief function
approximation. International Journal of Approximate Reasoning 71: 15-33.
Lee,
E.S. & Zhu, Q. 1992. An interval dempster-shafer approach. Computers and
Mathematics with Applications 24: 89-95.
Li, Z.,
Han, C. & Gu, T. 2018. Economics of biomass gasification: A review of the
current status. Energy Sources Part B Economics Planning and Policy 13:
137-140.
Liu,
Z., Pan, Q. & Dezert, J. 2014. A belief classification rule for imprecise
data. Applied Intelligence 40: 214-228.
Liu,
W.R. 2006. Analyzing the degree of conflict among belief functions. Artificial
Intelligence 170: 909-924.
Loudahi,
M., Klein, J., Vannobel, J.M. & Colot, O. 2016. Evidential matrix metrics
as distances between meta-data dependent bodies of evidence. IEEE
Transactions on Cybernetics 46: 109-122.
Martin,
A., Jousselme, A.L. & Osswald, C. 2008. Conflict measure for the
discounting operation on belief functions. International Conference on
Information Fusion pp. 1-8.
Mo,
H.M., Lu, X. & Deng, Y. 2016. A generalized evidence distance. Journal
of Systems Engineering and Electronics 27: 470-476.
Oyekale, A.S. 2017. Cocoa
farmers' safety perception and compliance with precautions in
the use of pesticides in centre and western cameroon. Applied
Ecology and Environmental Research 15: 205-219.
Sevastianov, P., Dymova,
L. & Bartosiewicz, P. 2012. A framework for rule-base evidential reasoning
in the interval setting applied to diagnosing Type 2 diabetes. Expert
Systems with Applications 39: 4190-4200.
Sevastjanov,
P., Bartosiewicz, P. & Tkacz, K. 2010. The normalization of the Dempster’s
Rule of combination. Artificial Intelligence and Soft Computing, Pt II 6114:
659- 666.
Shafer,
G. 1976. A Mathematical Theory of Evidence. Princeton: Princeton
University Press.
Sigren,
J.M., Figlus, J., Highfield, W., Feagin, R.A. & Armitage, A.R. 2018. The
effects of coastal dune volume and vegetation on storm-induced property damage:
Analysis from hurricane ike. Journal of Coastal Research 34: 164-173.
Skibicki,
D., Pejkowski, L. & Stopel, M. 2017. Finite element analysis of ventilation
system fire damper dynamic time-history. Polish Maritime Research 24:
116-123.
Smets,
P. & Kennes, R. 1994. The transferable belief model. Artificial
Intelligence 66: 191-234.
Song,
Y., Wang, X., Lei, L. & Yue, S. 2016. Uncertainty measure for
interval-valued belief structures. Measurement 80: 241- 250.
Song,
Y., Wang, X., Lei, L. & Xue, A. 2014. Combination of interval-valued belief
structures based on intuitionistic fuzzy set. Knowledge-Based Systems 67:
61-70.
Sunberg,
Z. & Rogers, J. 2013. A belief function distance metric for orderable sets. Information Fusion 14: 361-373.
Tessem,
B. 1993. Approximations for efficient computation in the theory of evidence. Artificial
Intelligence 61: 315-329.
Thierry,
D. & Philippe, S. 2007. Classification using belief functions: Relationship
between case-based and model-based approaches. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 36: 1395-1406.
Verde,
R. & Irpino, A. 2008. A new interval data distance based on the Wasserstein
metric. In Data Analysis, Machine Learning and Applications. Studies in
Classification, Data Analysis, and Knowledge Organization, edited by
Preisach, C., Burkhardt, H., Schmidt-Thieme, L. & Decker, R. Berlin,
Heidelberg: Springer-Verlag. pp. 705-712.
Wahi,
N., Bhatia, A.K. & Bhadauria, S. 2018. Impact of protozoan vahlkampfia sp
on the growth of algae Chlorella vulgaris glamtr. Journal of
Environmental Biology 39: 109-115.
Wang,
Y.M., Yang, J.B., Xu, D.L. & Chin, K.S. 2007. On the combination and
normalization of interval-valued belief structures. Information Sciences 177:
1230-1247.
Wu, Y.,
Ren, Z. & Zeng, Z. 2010. Fault diagnosis method based on D-S evidence
theory. Prognostics and Health Management Conference. pp. 1-4.
Xu,
X.B., Feng, H.S. & Wen, C.L. 2012. A normalization method of
interval-valued belief structures. Information - An International
Interdisciplinary Journal 15: 239-248.
Yager,
R.R. 2001. Dempster-Shafer belief structures with interval valued focal
weights. International Journal of Intelligent Systems 16: 497-512.
Yang,
Y. & Han, D. 2015. A new distance-based total uncertainty measure in the
theory of belief functions. Knowledge-Based Systems 94: 114-123.
Yang,
Y., Zhong, M., Yao, H., Yu, F., Fu, X. & Postolache, O. 2018. Internet of
things for smart ports: Technologies and challenges. IEEE Instrumentation
and Measurement Magazine 21: 34-43.
Yuan,
K., Xiao, F., Fei, L., Kang, B. & Deng, Y. 2016. Modeling sensor reliability
in fault diagnosis based on evidence theory. Sensors 16: 113.
Zouhal,
L.M. & Denoeux, T. 1998. An evidence-theoretic k-NN rule with parameter
optimization. Systems Man and Cybernetics Part C (Applications and Reviews) 28:
263-271.
*Pengarang untuk surat-menyurat; email:
tyzhangxy@163.com