Sains Malaysiana 48(2)(2019): 377–383

http://dx.doi.org/10.17576/jsm-2019-4802-15

 

Investigation of Simple Portable Telescope Validity for Muon Detection Inside Metals

(Kajian Kesahihan Teleskop Mudah Alih untuk Mengesan Muon di dalam Logam)

 

RASHA N.I. ALTAMEEMI1, NURUL SHAZANA ABDUL HAMID1*, WAN MOHD AIMRAN WAN MOHD KAMIL1, SAAD M. SALEH AHMED2 & GERI GOPIR1

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Deparment of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 14 April 2018/Diterima: 4 Oktober 2018

 

ABSTRACT

Muons produced in the atmosphere by cosmic rays are preferred over gamma rays, X-rays and fast protons for the detection of metals in the study of radiography. An alternative method for metals detection involving portable and relatively cheap Geiger-Muller counters are proposed. The objective of this study was to investigate the validity of using a handmade muon telescope with a small solid angle for the detection of muons inside the metals. This experiment was carried out at Universiti Kebangsaan Malaysia, Bangi (101.78º E, 2.92º N and elevation 30 m). Measurement of muons was conducted in the vertical direction using 1 set of muon telescopes (MT) consisting of coaxial Geiger-Muller (GM) counters. Different metals - lead (Pb), zinc (Zn) and aluminium (Al) - were used as absorbers with different thickness to observe its influence on the count rate of muons. The efficiency of the experimental setup was evaluated using statistical methods and by obtaining sufficient number of muon detection events to describe the physics of the muon interaction with the metals. Based on the Rossi curve obtained for each metal, the transition point was estimated as follows: 1.5 cm for Pb, 4.0 cm for Zn, and 9.0 cm for Al. The results showed that the proposed alternative setup was adequate for detecting muons and therefore have the potential to be further developed.

 

Keywords: Geiger-Muller counters; metal sheets; muon telescope; Rossi curve

 

ABSTRAK

Muon yang dihasilkan dalam atmosfera oleh sinar kosmik adalah lebih diutamakan daripada sinar gama, sinar-x dan proton berkelajuan tinggi sebagai pengesan logam dalam kajian radiografi. Satu kaedah alternatif untuk mengesan logam yang melibatkan penghitung Geiger-Muller mudah alih dan lebih murah dicadangkan. Objektif kajian ini adalah untuk mengkaji kesahihan menggunakan teleskop muon dengan sudut pejal yang kecil untuk pengesanan muon di dalam logam. Uji kaji ini telah dijalankan di Universiti Kebangsaan Malaysia, Bangi (101.78º E, 2.92º N pada ketinggian 30 m). Pengukuran muon telah dijalankan pada arah menegak menggunakan 1 set teleskop muon (TM) yang terdiri daripada sepaksi penghitung Geiger-Muller (GM). Logam berbeza seperti plumbum (Pb), zink (Zn) dan aluminium (Al) telah digunakan sebagai penyerap dengan ketebalan berbeza untuk melihat pengaruhnya terhadap kadar kiraan muon. Persediaan percubaan uji kaji dinilai menggunakan kaedah statistik dan dengan mendapatkan bilangan kejadian pengesanan muon yang mencukupi untuk menerangkan interaksi muon dengan logam. Berdasarkan lengkung Rossi yang diperoleh untuk setiap logam, titik peralihan dianggarkan seperti berikut: 1.5 cm untuk Pb, 4.0 cm bagi Zn dan 9.0 cm bagi Al. Keputusan menunjukkan bahawa persediaan alternatif yang dicadangkan mencukupi untuk mengesan muon dan berpotensi untuk dibangunkan.

 

Kata kunci: Kepingan logam; lengkung Rossi; penghitung Geiger-Muller; teleskop muon

 

RUJUKAN

Altameemi, R.N.I. & Gopir, G. 2016. Effect of copper and aluminium on the event rate of cosmic ray muons at ground level in Bangi, Malaysia. AIP Conference Proceedings 2016 1784: 040005.

Antonuccio, V., Bandieramonte, M., Becciani, U., Bonanno, D.L., Bonanno, G., Bongiovanni, D., Fallica, P.G., Garozzo, S., Grillo, A., Rocca, P.La., Leonora, E., Longhitano, F., Presti, D.Lo., Marano, D., Parasole, O., Pugliatti, C., Randazzo, N., Riggi, F. & Valvo, G. 2017. The muon portal project: Design and construction of a scanning portal based on muon tomography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 845: 322-325.

Ashnina, H.M.A. 2012. Effect of sheilding building on muon events at ground level. MSc Thesis, School of Physics. Bangi: Universiti Kebangsan Malaysia (Unpublished).

Bogdanov, A.G., Burkhardt, H., Ivanchenko, V.N., Kelner, S.R., Kokoulin, R.P., Maire, M., Rybin, A.M. & Urban, L. 2006. Geant4 simulation of production and interaction of Muons. IEEE Transactions on Nuclear Science 53(2): 513-519.

Bonal, N.D., Iv, A.T.C., Cieslewski, G., Dorsey, D.J., Foris, A., Green, J.A., Miller, T.J., Preston, L.A., Roberts, B.L., Schwellenbach, D. & Su, J.C. 2016. Using muons to image the subsurface. Sandia Report. pp. 1-64.

Bonal, N.D., Preston, L.A., Dorsey, D.J., Schwellenbach, D., Dreesen, W. & Green, J.A. 2015. Muon Technology for Geophysical Applications. Sandia National Laboratories (SNL-NM). Albuquerque, NM (United States).

Bonolis, L. 2011. Walther Bothe and Bruno Rossi: The birth and development of coincidence methods in cosmic-ray physics. Am. J. Phys. 79(11):1133-1150.

Borozdin, K.N., Hogan, G.E., Morris, C., Priedhorsky, W.C., Saunders, A., Schultz, L.J. & Teasdale, M.E. 2003. Surveillance: Radiographic imaging with cosmic-ray muons. Nature 422: 277-278.

Brini, D., Peli, L., Rimondi, O. & Veronesi, P. 1955. Absolute low-energy differential range spectrum of cosmic ray μ-mesons at sea-level. Il Nuovo Cimento (1955-1965) 2(3): 613-638.

Das Gupta, N.N. & Ghosh, S.K. 1946. A report on the wilson cloud chamber and its applications in physics. Reviews of Modern Physics 18(2): 225-365.

Dixit, M.S. & Rankin, A. 2006. Simulating the charge dispersion phenomena in micro pattern gas detectors with a resistive anode. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 566(2): 281-285.

Dupré, R. & Aune, S. 2013. Genetic multiplexing and first results with a 50 × 50 cm2 Micromegas. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 729: 888-894.

Eissa, N.A., Berényi, D., Máthé, G., Varga, D., Řezanka, I. & Malý, L. 1967. New higher levels of 144Nd in the decay of 144Pm. Nuclear Physics A 100(2): 438-448.

Fomin, Y.A., Kalmykov, N.N., Karpikov, I.S., Kulikov, G.V., Kuznetsov, M.Y., Rubtsov, G.I., Sulakov, V.P. & Troitsky, S.V. 2017. No muon excess in extensive air showers at 100- 500 PeV primary energy: EAS-MSU results. Astroparticle Physics 92: 1-6.

Fredrick, H.S. 2016. Methods and simulations of muon tomography and reconstruction. The University of Texas at Austin (Unpublished).

George, E.P., Jánossy, L. & McCaig, M. 1942. The ‘second maximum’ of the shower transition curve of cosmic radiation. Proc. R. Soc. Lond. A 180: 219-224.

Heyland, G.R. & Duncanson, W.E. 1953. A search for irregularities in the absorption of cosmic rays in lead. Proceedings of the Physical Society: Section A 66(1): 33.

Jánossy, L. & Nagy, L. 1957. Experiments on the Rossi curve. Acta Physica Academiae Scientiarum Hungaricae 6(3): 467.

Nagy, L. 1958. Shower production at small thicknesses of absorber. Acta Physica Academiae Scientiarum Hungaricae 9(1): 63-72.

Priedhorsky, W.C., Borozdin, K.N., Hogan, G.E., Morris, C., Saunders, A., Schultz, L.J. & Teasdaleb, M.E. 2004. Detection of high-z objects using multiple scattering of cosmic ray muons. AIP Conference Proceedings 698: 755-758.

Procureur, S. 2017. Muon imaging: Principles, technologies and applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 878: 169-179.

Samat, S.B. & Evans, C.J. 2011. Determination of radiation hazard arising from the 40K content of bottled mineral water in Malaysia. Sains Malaysiana 40(12): 1355-1358.

Schultz, L.J., Borozdin, K.N., Gomez, J.J., Hogan, G.E., McGill, J.A., Morris, C.L., Priedhorsky, W.C., Saunders, A. & Teasdale, M.E. 2004. Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 519(3): 687-694.

Swann, W.F.G. & Ramsey, W.E. 1940. The secondary peak in the Rossi curvi for tin. Phys. Rev. 477: 661-663.

Tanaka, H.K.M., Nakano, T., Takahashi, S., Yoshida, J., Takeo, M., Oikawa, J., Ohminato, T., Aoki, Y., Koyama, E., Tsuji, H., Ohshima, H., Maekawa, T., Watanabe, H. & Niwa, K. 2008. Radiographic imaging below a volcanic crater floor with cosmic-ray muons. American Journal of Science 308: 843-850.

Tawalbeh, A.A., Samat, S.B. & Yasir, M.S. 2013. Radionuclides level and its radiation hazard index in some drinks consumed in the central zone of Malaysia. Sains Malaysiana 42(3): 319-323.

Thabayneh, K.M. 2016. Determination of alpha particles concentration in some soil samples and the extent of their impact on health. Sains Malaysiana 45(5): 699-707.

Zain, N.M., Gopir, G.K., Yatim, B., Sanusi, H. & Husain, N.H. 2010. Observation of ground level muon at Bangi in 2008-2009. AIP Conference Proceedings 1250: 468-471.

Zain, N.M., Gopir, G.K., Yatim, B., Sanusi, H. & Husaina, N.H. 2009. Zenith angle dependence of muon rate at ground level in Bangi. International Conference on Space Science and Communication, IconSpace - Proceedings. pp. 191-194.

 

*Pengarang untuk surat-menyurat; email: shazana.ukm@gmail.com

 

 

 

 

 

sebelumnya