Sains Malaysiana 48(2)(2019): 385–391
http://dx.doi.org/10.17576/jsm-2019-4802-16
Physical
and Chemical Properties of the Rice Straw Activated Carbon Produced from Carbonization
and KOH Activation Processes
(Sifat
Fizikal dan Kimia Karbon Teraktif Jerami Padi yang Terhasil melalui Proses Pengkarbonan
dan Pengaktifan KOH)
MOHAMAD JANI SAAD1,4, CHIN HUA CHIA1*, SARANI ZAKARIA1, MOHD SHAIFUL SAJAB2, SUFIAN MISRAN3, MOHAMMAD
HARIZ ABDUL RAHMAN4 & SIEW XIAN CHIN5
1Bioresources
and Biorefinery Laboratory, Materials Science Program, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Research
Centre for Sustainable Process Technology, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
3Forest
Research Institute of Malaysia, 52100 Kepong, Selangor Darul Ehsan, Malaysia
4Green
Technology Program, Agrobiodiversity and Environment Research Centre, Malaysian
Agriculture Research and Development Institute, 43400 Serdang, Selangor Darul
Ehsan, Malaysia
5ASASIpintar
Program, Pusat PERMATApintar®, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan:
1 Jun 2018/Diterima: 12 Oktober 2018
ABSTRACT
In this study, highly porous activated carbon was produced from
rice straw by carbonization and followed by activation using potassium
hydroxide (KOH). Activated carbon samples were prepared under
different activation temperatures, i.e., 650, 750 and 850°C, and their physical
and chemical properties were characterized accordingly. The BET surface
area of the activated carbon samples was increased from 520 to 1048 m2/g
with the increase of activation temperature from 650 to 850°C. These values were much higher than the
non-activated rice straw carbon i.e., 1.16 m2/g.
The pore sizes of the rice straw activated carbon were found to be mainly in
mesopore size range of 2-50 nm. Total carbon content of the AC sample was
increased from 8.35% to 31.73% with the increase of activation temperature from
650 to 850°C. XRD and Raman spectroscopy
confirmed the graphite properties of the activated carbons produced. SEM images
proved high porosity of the AC after KOH activation.
Keywords: Activated carbon; biomass; lignocellulosic
ABSTRAK
Dalam kajian ini, karbon teraktif berliang
tinggi telah dihasilkan daripada jerami padi melalui proses pengkarbonan
dan diikuti dengan pengaktifan bersama kalium hidroksida (KOH).
Sampel karbon teraktif disediakan pada suhu pengaktifan yang berbeza,
iaitu 650, 750 dan 850°C dan sifat fizikal dan kimia sampel
tersebut dicirikan. Luas permukaan sampel arang teraktif meningkat
daripada 520 ke 1048 m2/g
dengan peningkatan suhu pengaktifan daripada 650 ke 850°C. Nilai
ini adalah jauh lebih tinggi berbanding sampel karbon jerami padi
tanpa melalui proses pengaktifan, iaitu 1.16 m2/g. Saiz liang karbon teraktif adalah
pada saiz liang meso, iaitu dalam julat saiz 2-50 nm. Kandungan
karbon bagi sampel arang teraktif telah meningkat daripada 8.35%
kepada 31.73% dengan peningkatan suhu pengaktifan daripada 650 kepada
850°C. Analisis
XRD
dan spektroskopi Raman telah membuktikan sifat grafit
karbon teraktif yang terhasil. Imej SEM membuktikan sifat keliangan
yang tinggi bagi karbon teraktif jerami padi selepas proses pengaktifan
KOH.
Kata kunci: Biojisim; karbon teraktif;
lignoselulosa
RUJUKAN
Altenor, S., Carene, B., Emmanuel, E., Lambert, J., Ehrhardt,
J.J. & Gaspard, S. 2009. Adsorption studies of methylene blue and phenol
onto vetiver roots activated carbon prepared by chemical activation. Journal
of Hazardous Materials 165: 1029-1039.
Basta, A.H., Fierro, V., El-Saied, H. & Celzard, A.
2009. 2-steps KOH activation of rice straw: An efficient method for preparing
high-performance activated carbons. Bioresource Technology 100:
3941-3947.
Bhatnagar, A., Hogland, W., Marques, M. & Sillanpää, M.
2013. An overview of the modification methods of activated carbon for its water
treatment applications. Chemical Engineering Journal 219: 499-511.
Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H.,
Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, C.G. & Almeida, V.C.
2011. NaOH-activated carbon of high surface area produced from coconut shell:
Kinetics and equilibrium studies from the methylene blue adsorption. Chemical
Engineering Journal 174: 117-125.
Chen, J.S., Zhang, F. & Li, G.D. 2008. Effects of raw
material texture and activation manner on surface area of porous carbons
derived from biomass resources. Journal of Colloid and Interface Science 327:
108-114.
Chunlan, L., Shaoping, X., Yixiong, G., Shuqin, L. &
Changhou, L. 2005. Effect of pre-carbonization of petroleum cokes on chemical
activation process with KOH. Carbon 43: 2295- 2301.
Danish, M. & Ahmad, T. 2018. A review on utilization of
wood biomass as a sustainable precursor for activated carbon production and
application. Renewable and Sustainable Energy Reviews 87: 1-21.
El-Hendawy, A.N.A. 2003. Influence of HNO3 oxidation
on the structure and absorptive properties of the corncob based activated
carbon. Carbon 41: 713-722.
Evans, M.J.B., Halliop, E. & Macdonald, J.A.F. 1999. The
production of chemically activated carbon. Carbon 37: 269-274.
Everett, D.H. 1972. Manual of symbols and terminology for
physicochemical quantities and units, Appendix II: definitions, terminology and
symbols in colloid and surface chemistry. Pure Appl. Chem. 31(4):
577-638.
Foo, K.Y. & Hameed, B.H. 2011. Utilization of rice husks
as a feedstock for preparation of activated carbon by microwave induced KOH and
K2CO3 activation. Bioresource Technology 102: 9814-9817.
Gao, P., Liu, Z.H., Xue, G., Han, B. & Zhou, M.H. 2011.
Preparation and characterization of activated carbon produced from rice straw
by (NH4)2HPO4 activation. Bioresource Technology 102: 3645-3648.
Guo, Y.P., Yang, S.F., Fu, W.Y., Qi, J.R., Li, R.Z., Wang,
Z.C. & Xu, H.D. 2003. Adsorption of malachite green on micro- and
mesoporous rice husk-based active carbon. Dyes Pigments 56: 219-229.
Hamza, U.D., Nasri, N.S., Amin, N.S., Mohammed, J. &
Zain, H.M. 2015. Characteristics of oil palm shell biochar and activated carbon
prepared at different carbonization time. Desalin Water Treatment 57(17):
7999-8006.
Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos,
E., Otal, E., del Valle, J.O. & Fernandez-Pereira, C. 2008. Adsorption of
polluting substances on activated carbons prepared from rice husk and sugarcane
bagasse. Chemical Engineering Journal 144: 42-50.
Kayiran, S.B., Lamari, F.D. & Levesque, D. 2004.
Adsorption properties and structural characterization of activated carbons and
nanocarbons. Journal Physic Chemistry B 108(39): 15211-15215.
Lembaga Kemajuan Pertanian Muda (MADA). 2010. Laporan
Tahunan. Alor Setar, Kedah.
Lim, J.S., Manan, Z.A., Alwi, S.R.W. & Hashim, H. 2012.
A review on utilization of biomass from rice industry as a source of renewable
energy. Renewable and Sustainable Energy Reviews 16(5): 3084-3094.
Ma, X. & Ouyang, F. 2013.Adsorption properties of
biomass-based activated carbon prepared with spent coffee grounds and pomelo
skin by phosphoric acid activation. Applied Surface Science 268:
566-570.
MohdIqbaldin, M.N., Khudzir, I., MohdAzlan, M.I., Zaidi,
A.G., Surani, B. & Zubri, Z. 2013. Properties of coconut shell activated
carbon. Journal of Tropical Forest Science 25(4): 497-503.
Muniandy, L., Adam, F., Mohamed, A.R. & Ng, E.P. 2014.
The synthesis and characterization of high purity mixed microporous/mesoporous
activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous
Mesoporous Material 197: 316-323.
Oh, G.H. & Park, C.R. 2002. Preparation and
characteristics of rice straw based porous carbon with high adsorption
capacity. Fuel 81: 327-336.
Oh, G.H., Yun, C.H. & Park, C.R. 2003. Role of KOH in
the one-stage KOH activation of cellulosic biomass. Carbon Science 4:
180-184.
Perrin, A., Celzard, A., Albiniak, A., Kaczmarczyk, J.,
Mareche, J.F. & Furdin, G. 2004. NaOH activation of anthracites: Effect of
temperature on pore textures and methane storage ability. Carbon 42:
2855-2901.
Pol, V.G., Motiei, M., Gedanken, A., Calderon-Moreno, J.
& Yoshimura, M. 2004. Carbon spherules: Synthesis, properties and
mechanistic elucidation. Carbon 42: 111-116.
Rosmiza, M.Z., Davies, W.P., Rosniza Aznie, C.R., Mazdi, M.
& Jabil, M.J. 2014. Farmers’ knowledge on potential uses of rice straw: An
assessment in MADA and Sekinchan, Malaysia. Malaysian Journal of Society and
Space 5: 30-43.
Rostamian, R., Heidarpour, M., Mousavi, S.F. & Afyuni,
M. 2015. Characterization and sodium sorption capacity of biochar and activated
carbon prepared from rice husk. Journal Agricultural Science Technology 17:
1057-1069.
Rugayah,
A.F., Astimar, A.A. & Norzita, N. 2014. Preparation and characterization of
activated carbon from palm kernel shell by physical
activation with steam. Journal Oil Palm Research 26: 251-264
San
Miguel, G., Fowler, G.D. & Sollars, C.J. 2003. A study of the
characteristics of activated carbons produced by steam and carbon
dioxide activation of waste tyre rubber. Carbon 41: 1009-1016.
Schroder,
E., Thomauske, K., Weber, C., Hornung, A. & Tumiatti, V. 2007.
Experiments on the generation of activated carbon from biomass.
Journal of Analytical and Applied Pyrolysis 79: 106-111.
Shamsuddin,
M.S., Yusoff, N.R.N. & Sulaiman, M.A. 2016. Synthesis and characterization
of activated carbon produced from kenaf core fiber using H3PO4 activation.
Procedia Chemistry 19: 558-565.
Sobhy, M.Y., Hakim, A.E., Daifullah, M. & Sohair, A.E.
2015. Pore structure characterization of chemically modified biochar
derived from rice straw. Environmental Engineering and Management
Journal 14(2): 473-480.
Song,
M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z. & Huang, Y. 2013. The
comparison of two activation techniques to prepare activated carbon from corn
cob. Biomass Bioenergy 48: 250-256.
Srenscek-Nazzal,
J., Kaminskaa, W., Michalkiewicza, B. & Korenb, Z. 2013. Production,
characterization and methane storage potential of KOH-activated carbon from
sugarcane molasses. Industrial Crops and Products 47: 153-159.
Sumrit,
M., Supattra, I. & Laddawan, A. 2015. Effect of temperature on micropore of
activated carbon from sticky rice straw by H3PO4 activation. Carbon: Science
and Technology 7: 24-29.
Tang,
Y.B., Liu, Q. & Chen, F.Y. 2012. Preparation and characterization of
activated carbon from waste Ramulus mori. Chemical Engineering
Journal 203: 19-24.
Viboon,
S., Chiravoot, P., Duangdao A. & Duangduen, A. 2008. Preparation and
characterization of activated carbon from the pyrolysis of physic nut (Jatropha
curcas L.) waste. Energy & Fuels 22: 31-37.
Wu,
M., Guo, Q. & Fu, G. 2013. Preparation and characteristics of medicinal
activated carbon powders by CO2 activation of peanut shells. Powder
Technology 247: 188-196.
Wu,
W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H.H. & Chen, Y.X.
2012. Chemical characterizations of rice straw-derived bio char for soil
amendment. Biomass & Bioenergy 47: 268-276.
Yakout,
S.M. & El-Deen, G.S 2016. Characterization of activated carbon prepared by
phosphoric acid activation of olive stones. Arabian Journal of Chemistry 9:
S1155-S1162.
Yu,
Q., Li, M., Ning, P., Yi, H. & Tang, X. 2014. Preparation and phosphine
adsorption of activated carbon prepared from walnut shells by KOH chemical
activation. Separation Science Technology 49: 2366-2375.
Zainol,
M.M., Amin, N.A.S. & Asmadi, M. 2017. Preparation and characterization of
impregnated magnetic particles on oil palm frond activated carbon for metal
ions removal. Sains Malaysiana 46(5): 773-782.
Zhang,
F., Wang, K.X., Li, G.D. & Chen, J.S. 2009. Hierarchical porous carbon
derived from rice straw for lithium ion batteries with high-rate performance. Electrochemistry
Communication 11: 130-133.
Zhang,
F., Ma, H., Chen, J., Li, G.D., Zhang, Y. & Chen, J.S. 2008. Preparation
and gas storage of high surface area microporous carbon derived from biomass
source cornstalks. Bioresource Technology 99: 4803-4808.
Zhu,
K., Fu, H., Zhang, J., Ly, X., Tang, J. & Xu, X. 2012. Studies on removal
of NH4+-N from aqueous solution by using the activated carbons derived from
rice husk. Biomass & Bioenergy 43: 18-25.
*Pengarang
untuk surat-menyurat; email: chia@ukm.edu.my
|