Sains Malaysiana 48(2)(2019): 385–391

http://dx.doi.org/10.17576/jsm-2019-4802-16

 

Physical and Chemical Properties of the Rice Straw Activated Carbon Produced from Carbonization and KOH Activation Processes

(Sifat Fizikal dan Kimia Karbon Teraktif Jerami Padi yang Terhasil melalui Proses Pengkarbonan dan Pengaktifan KOH)

 

MOHAMAD JANI SAAD1,4, CHIN HUA CHIA1*, SARANI ZAKARIA1, MOHD SHAIFUL SAJAB2, SUFIAN MISRAN3, MOHAMMAD HARIZ ABDUL RAHMAN4 & SIEW XIAN CHIN5

 

1Bioresources and Biorefinery Laboratory, Materials Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Research Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Forest Research Institute of Malaysia, 52100 Kepong, Selangor Darul Ehsan, Malaysia

 

4Green Technology Program, Agrobiodiversity and Environment Research Centre, Malaysian Agriculture Research and Development Institute, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

5ASASIpintar Program, Pusat PERMATApintar®, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 1 Jun 2018/Diterima: 12 Oktober 2018

 

ABSTRACT

In this study, highly porous activated carbon was produced from rice straw by carbonization and followed by activation using potassium hydroxide (KOH). Activated carbon samples were prepared under different activation temperatures, i.e., 650, 750 and 850°C, and their physical and chemical properties were characterized accordingly. The BET surface area of the activated carbon samples was increased from 520 to 1048 m2/g with the increase of activation temperature from 650 to 850°C. These values were much higher than the non-activated rice straw carbon i.e., 1.16 m2/g. The pore sizes of the rice straw activated carbon were found to be mainly in mesopore size range of 2-50 nm. Total carbon content of the AC sample was increased from 8.35% to 31.73% with the increase of activation temperature from 650 to 850°C. XRD and Raman spectroscopy confirmed the graphite properties of the activated carbons produced. SEM images proved high porosity of the AC after KOH activation.

 

Keywords: Activated carbon; biomass; lignocellulosic

 

ABSTRAK

Dalam kajian ini, karbon teraktif berliang tinggi telah dihasilkan daripada jerami padi melalui proses pengkarbonan dan diikuti dengan pengaktifan bersama kalium hidroksida (KOH). Sampel karbon teraktif disediakan pada suhu pengaktifan yang berbeza, iaitu 650, 750 dan 850°C dan sifat fizikal dan kimia sampel tersebut dicirikan. Luas permukaan sampel arang teraktif meningkat daripada 520 ke 1048 m2/g dengan peningkatan suhu pengaktifan daripada 650 ke 850°C. Nilai ini adalah jauh lebih tinggi berbanding sampel karbon jerami padi tanpa melalui proses pengaktifan, iaitu 1.16 m2/g. Saiz liang karbon teraktif adalah pada saiz liang meso, iaitu dalam julat saiz 2-50 nm. Kandungan karbon bagi sampel arang teraktif telah meningkat daripada 8.35% kepada 31.73% dengan peningkatan suhu pengaktifan daripada 650 kepada 850°C. Analisis XRD dan spektroskopi Raman telah membuktikan sifat grafit karbon teraktif yang terhasil. Imej SEM membuktikan sifat keliangan yang tinggi bagi karbon teraktif jerami padi selepas proses pengaktifan KOH.

 

Kata kunci: Biojisim; karbon teraktif; lignoselulosa

RUJUKAN

Altenor, S., Carene, B., Emmanuel, E., Lambert, J., Ehrhardt, J.J. & Gaspard, S. 2009. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. Journal of Hazardous Materials 165: 1029-1039.

Basta, A.H., Fierro, V., El-Saied, H. & Celzard, A. 2009. 2-steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons. Bioresource Technology 100: 3941-3947.

Bhatnagar, A., Hogland, W., Marques, M. & Sillanpää, M. 2013. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal 219: 499-511.

Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, C.G. & Almeida, V.C. 2011. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal 174: 117-125.

Chen, J.S., Zhang, F. & Li, G.D. 2008. Effects of raw material texture and activation manner on surface area of porous carbons derived from biomass resources. Journal of Colloid and Interface Science 327: 108-114.

Chunlan, L., Shaoping, X., Yixiong, G., Shuqin, L. & Changhou, L. 2005. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon 43: 2295- 2301.

Danish, M. & Ahmad, T. 2018. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews 87: 1-21.

El-Hendawy, A.N.A. 2003. Influence of HNO3 oxidation on the structure and absorptive properties of the corncob based activated carbon. Carbon 41: 713-722.

Evans, M.J.B., Halliop, E. & Macdonald, J.A.F. 1999. The production of chemically activated carbon. Carbon 37: 269-274.

Everett, D.H. 1972. Manual of symbols and terminology for physicochemical quantities and units, Appendix II: definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem. 31(4): 577-638.

Foo, K.Y. & Hameed, B.H. 2011. Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation. Bioresource Technology 102: 9814-9817.

Gao, P., Liu, Z.H., Xue, G., Han, B. & Zhou, M.H. 2011. Preparation and characterization of activated carbon produced from rice straw by (NH4)2HPO4 activation. Bioresource Technology 102: 3645-3648.

Guo, Y.P., Yang, S.F., Fu, W.Y., Qi, J.R., Li, R.Z., Wang, Z.C. & Xu, H.D. 2003. Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dyes Pigments 56: 219-229.

Hamza, U.D., Nasri, N.S., Amin, N.S., Mohammed, J. & Zain, H.M. 2015. Characteristics of oil palm shell biochar and activated carbon prepared at different carbonization time. Desalin Water Treatment 57(17): 7999-8006.

Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., del Valle, J.O. & Fernandez-Pereira, C. 2008. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chemical Engineering Journal 144: 42-50.

Kayiran, S.B., Lamari, F.D. & Levesque, D. 2004. Adsorption properties and structural characterization of activated carbons and nanocarbons. Journal Physic Chemistry B 108(39): 15211-15215.

Lembaga Kemajuan Pertanian Muda (MADA). 2010. Laporan Tahunan. Alor Setar, Kedah.

Lim, J.S., Manan, Z.A., Alwi, S.R.W. & Hashim, H. 2012. A review on utilization of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews 16(5): 3084-3094.

Ma, X. & Ouyang, F. 2013.Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation. Applied Surface Science 268: 566-570.

MohdIqbaldin, M.N., Khudzir, I., MohdAzlan, M.I., Zaidi, A.G., Surani, B. & Zubri, Z. 2013. Properties of coconut shell activated carbon. Journal of Tropical Forest Science 25(4): 497-503.

Muniandy, L., Adam, F., Mohamed, A.R. & Ng, E.P. 2014. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Material 197: 316-323.

Oh, G.H. & Park, C.R. 2002. Preparation and characteristics of rice straw based porous carbon with high adsorption capacity. Fuel 81: 327-336.

Oh, G.H., Yun, C.H. & Park, C.R. 2003. Role of KOH in the one-stage KOH activation of cellulosic biomass. Carbon Science 4: 180-184.

Perrin, A., Celzard, A., Albiniak, A., Kaczmarczyk, J., Mareche, J.F. & Furdin, G. 2004. NaOH activation of anthracites: Effect of temperature on pore textures and methane storage ability. Carbon 42: 2855-2901.

Pol, V.G., Motiei, M., Gedanken, A., Calderon-Moreno, J. & Yoshimura, M. 2004. Carbon spherules: Synthesis, properties and mechanistic elucidation. Carbon 42: 111-116.

Rosmiza, M.Z., Davies, W.P., Rosniza Aznie, C.R., Mazdi, M. & Jabil, M.J. 2014. Farmers’ knowledge on potential uses of rice straw: An assessment in MADA and Sekinchan, Malaysia. Malaysian Journal of Society and Space 5: 30-43.

Rostamian, R., Heidarpour, M., Mousavi, S.F. & Afyuni, M. 2015. Characterization and sodium sorption capacity of biochar and activated carbon prepared from rice husk. Journal Agricultural Science Technology 17: 1057-1069.

Rugayah, A.F., Astimar, A.A. & Norzita, N. 2014. Preparation and characterization of activated carbon from palm kernel shell by physical activation with steam. Journal Oil Palm Research 26: 251-264

San Miguel, G., Fowler, G.D. & Sollars, C.J. 2003. A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber. Carbon 41: 1009-1016.

Schroder, E., Thomauske, K., Weber, C., Hornung, A. & Tumiatti, V. 2007. Experiments on the generation of activated carbon from biomass. Journal of Analytical and Applied Pyrolysis 79: 106-111.

Shamsuddin, M.S., Yusoff, N.R.N. & Sulaiman, M.A. 2016. Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chemistry 19: 558-565.

Sobhy, M.Y., Hakim, A.E., Daifullah, M. & Sohair, A.E. 2015. Pore structure characterization of chemically modified biochar derived from rice straw. Environmental Engineering and Management Journal 14(2): 473-480.

Song, M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z. & Huang, Y. 2013. The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass Bioenergy 48: 250-256.

Srenscek-Nazzal, J., Kaminskaa, W., Michalkiewicza, B. & Korenb, Z. 2013. Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Industrial Crops and Products 47: 153-159.

Sumrit, M., Supattra, I. & Laddawan, A. 2015. Effect of temperature on micropore of activated carbon from sticky rice straw by H3PO4 activation. Carbon: Science and Technology 7: 24-29.

Tang, Y.B., Liu, Q. & Chen, F.Y. 2012. Preparation and characterization of activated carbon from waste Ramulus mori. Chemical Engineering Journal 203: 19-24.

Viboon, S., Chiravoot, P., Duangdao A. & Duangduen, A. 2008. Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy & Fuels 22: 31-37.

Wu, M., Guo, Q. & Fu, G. 2013. Preparation and characteristics of medicinal activated carbon powders by CO2 activation of peanut shells. Powder Technology 247: 188-196.

Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H.H. & Chen, Y.X. 2012. Chemical characterizations of rice straw-derived bio char for soil amendment. Biomass & Bioenergy 47: 268-276.

Yakout, S.M. & El-Deen, G.S 2016. Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian Journal of Chemistry 9: S1155-S1162.

Yu, Q., Li, M., Ning, P., Yi, H. & Tang, X. 2014. Preparation and phosphine adsorption of activated carbon prepared from walnut shells by KOH chemical activation. Separation Science Technology 49: 2366-2375.

Zainol, M.M., Amin, N.A.S. & Asmadi, M. 2017. Preparation and characterization of impregnated magnetic particles on oil palm frond activated carbon for metal ions removal. Sains Malaysiana 46(5): 773-782.

Zhang, F., Wang, K.X., Li, G.D. & Chen, J.S. 2009. Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochemistry Communication 11: 130-133.

Zhang, F., Ma, H., Chen, J., Li, G.D., Zhang, Y. & Chen, J.S. 2008. Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks. Bioresource Technology 99: 4803-4808.

Zhu, K., Fu, H., Zhang, J., Ly, X., Tang, J. & Xu, X. 2012. Studies on removal of NH4+-N from aqueous solution by using the activated carbons derived from rice husk. Biomass & Bioenergy 43: 18-25.

 

*Pengarang untuk surat-menyurat; email: chia@ukm.edu.my

 

 

 

 

 

sebelumnya