Sains Malaysiana 48(3)(2019): 677684
http://dx.doi.org/10.17576/jsm-2019-4803-22
Fifth Order Multistep Block Method for
Solving Volterra Integro-Differential
Equations of Second Kind
(Kaedah Blok
Berbilanglangkah Peringkat Lima
bagi Penyelesaian Persamaan Pembezaan - Kamiran Volterra Jenis Kedua)
ZANARIAH ABDUL
MAJID1,2* & NURUL ATIKAH
MOHAMED1
1Institute for Mathematical
Research, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
2Mathematics Department,
Faculty of Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
Diserahkan: 3 Julai 2018/Diterima: 21 November
2018
ABSTRACT
In the present paper, the multistep
block method is proposed to solve the linear and non-linear Volterra integro-differential equations
(VIDEs) of the second kind using constant step size. The
proposed block method of order five consists of two point block
method presented as in the simple form of Adams Moulton type.
The numerical solutions are obtained at two new values simultaneously
at each of the integration step. In VIDEs, the unknown function appears in the form of derivative
and under the integral sign. The approximation of the integral
part is estimated using the Booles quadrature rule. The stability
region is shown, and the numerical results are presented to illustrate
the performance of the proposed method in terms of accuracy, total
function calls and execution times compared to the existing method.
Keywords: Block method; quadrature
rule; Volterra integro-differential
equation
ABSTRAK
Dalam makalah ini, kaedah
blok berbilanglangkah
dicadangkan bagi
menyelesaikan persamaan pembezaan-kamiran Volterra (PPKV)
linear dan tak
linear daripada jenis kedua menggunakan saiz langkah yang malar. Kaedah blok
peringkat lima yang dicadangkan
terdiri daripada
dua titik blok
yang dibentangkan dalam
bentuk yang mudah daripada jenis Adams Moulton. Penyelesaian berangka diperoleh dalam dua nilai baru
pada masa yang sama
di setiap langkah
kamiran. Dalam PPKV,
fungsi yang tidak
diketahui muncul dalam bentuk terbitan
dan tanda
kamiran. Penghampiran bahagian kamiran
dianggarkan dengan
menggunakan peraturan kuadratur Boole. Rantau kestabilan
ditunjukkan dan
keputusan berangka dibentangkan untuk menggambarkan prestasi kaedah yang dicadangkan daripada segi kejituan,
jumlah panggilan
fungsi dan masa pelaksanaan berbanding kaedah sedia ada.
Kata kunci: Aturan
kuadratur; kaedah
blok; persamaan
pembezaan-kamiran Volterra
RUJUKAN
Chang, S.H. 1982. On certain extrapolation
methods for the numerical solution of integro-differential
equations. Mathematics of Computation 39(159): 165-171.
Chen, H. & Zhang, C. 2011. Boundary value methods for Volterra integral and integro-differential
equations. Applied Mathematics and Computation 218:
2619-2630.
Day, J.T. 1967. Note on the numerical solution of integro-differential equations. The Computer Journal 9(4):
394-395.
Dehghan, M. & Salehi,
R. 2012. The
numerical solution of the non-linear integro-differential
equations based on the meshless method. Journal
of Computational and Applied Mathematics 236: 2367- 2377.
Faires, D. & Burden, R.L. 2005. Numerical Analysis.
Belmont, CA: Thomson Brooks/Cole.
Feldstein, A. & Sopka, J.R. 1974.
Numerical methods for nonlinear Volterra
integro-differential equations.
Siam J. Numer. Anal. 11: 826-846.
Filiz, A. 2014. Numerical solution of linear Volterra integro-differential equation
using Runge-Kutta-Fehlberg
method. Applied and Computational Mathematics 3(1):
9-14.
Filiz, A. 2013. A fourth-order robust numerical method
for integro-differential equations.
Asian Journal of Fuzzy and Applied Mathematics 1(1): 28-33.
Ishak, F. & Ahmad, S.N. 2016. Development of extended trapezoidal
method for numerical solution of Volterra
integro-differential equations. International Journal
of Mathematics, Computational, Physical, Electrical and Computer
Engineering 10(11): 52856.
Kürkçü, Ö.K., Aslan, E. & Sezer, M. 2017.
A novel collocation method based on residual error analysis for
solving integro-differential equations using hybrid Dickson and Taylor
polynomials. Sains Malaysiana 46(2): 335-347.
Lambert, L.D. 1973. Computational Methods in Ordinary
Differential Equations. New York: John Wiley &
Sons, Inc.
Linz, P. 1969. Linear
multistep methods for Volterra integro-differential
equations. Journal of the Association for Computing
Machinery 16(2): 295-301.
Lubich,
C. 1982. Runge-Kutta theory for Volterra integro-differential
equations. Numer.
Math. 40: 119-135.
Majid, Z.A. & Suleiman, M. 2011. Predictor-corrector block iteration
method for solving ordinary differential equations. Sains Malaysiana 40(6):
659-664.
Makroglou, A. 1982. Hybrid methods in the numerical solution
of Volterra integro-differential
equations. IMA Jounal of Numerical
Analysis 2: 21-35.
Mocarsky, W.L. 1971. Convergence of step-by-step
methods for non-linear integro-differential
equations. IMA Journal of Applied Mathematics 8(2):
235-239.
Mohamed, N.A. & Majid, Z.A. 2016.
Multistep block method for solving Volterra
integro-differential equations.
Malaysian Journal of Mathematical Sciences 10: 33-48.
Yuan, W. & Tang, T. 1990. The numerical analysis of implicit
Runge-Kutta methods for a certain nonlinear integro-differential equation. Mathematics of Computation
54(189): 155-168.
*Pengarang untuk surat-menyurat; email: zana_majid99@yahoo.com