Sains Malaysiana 48(4)(2019): 791–801

http://dx.doi.org/10.17576/jsm-2019-4804-11

 

Electrochemical Degradation of Reactive Orange 16 by using Charcoal-Based Metallic Composite Electrodes

(Penguraian Elektrokimia Reaktif Oren 16 Menggunakan Elektrod Komposit Logam Berasaskan Arang)

 

ZUHAILIE ZAKARIA1,2, MOHAMED ROZALI OTHMAN1, SITI ZUBAIDAH HASAN3* & WAN YAACOB WAN AHMAD1

 

1School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Production Audit Department, Syarikat Air Terengganu Sdn. Bhd., 20200 Kuala Terengganu, Terengganu Darul Iman, Malaysia

 

3Research Centre for Sustainable Development Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 19 September 2018/Diterima: 23 Januari 2019

 

ABSTRACT

The performance of charcoal composite electrodes, by using commercial activated charcoal and charcoals from coconut trunk, mangrove wood, rubber wood, and sugarcane, was compared in an attempt to fabricate effective and low cost electrodes for wastewater treatment in textile industries. Reactive Orange 16 was chosen as a model dye because of its high resistance towards conventional treatment methods, while sodium chloride was selected as a supporting electrolyte. The electrode efficiencies were determined based on the percentage of Reactive Orange 16 decolourisation. The charcoals used, duration of electrolysis, functional groups present in charcoals, Brunauer-Emmett-Teller surface area and production of hypochlorite ion that contribute to the effectiveness of the electrodes were examined. The coconut trunk, rubber wood, sugarcane, mangrove wood, and commercially available activated charcoals that were incorporated into tin composite electrodes were able to degrade Reactive Orange 16 until 98.5%, 96.2%, 83.0%, 71.2%, and 29.6%, respectively, after 20 min of electrolysis. The degradation increases with duration of electrolysis. This study illustrated that the production of hypochlorite ion from sodium chloride in solution was the main factor that enhanced the Reactive Orange 16 colour removal. Adsorption process on the electrode surface did not play any significant role in the dye decolourisation.

 

Keywords: Agricultural waste; composite; decolourisation; electrolysis; reactive orange 16

 

ABSTRAK

Prestasi elektrod komposit berasaskan arang dengan menggunakan arang teraktif komersial dan arang daripada batang kelapa, kayu bakau, kayu getah dan tebu telah dibandingkan dalam satu percubaan untuk menghasilkan elektrod yang berkesan dan berkos rendah bagi perawatan air sisa industri tekstil. Reaktif Oren 16 dipilih sebagai pewarna ujian kerana ketahanannya yang tinggi terhadap kaedah perawatan konvensional manakala natrium klorida dipilih sebagai elektrolit penyokong. Keberkesanan elektrod ditentukan berdasarkan peratus penyahwarnaan Reaktif Oren 16. Jenis arang yang digunakan, tempoh masa elektrolisis, kumpulan berfungsi yang wujud dalam arang, luas permukaan Brunauer-Emmett-Teller dan penghasilan ion hipoklorit yang menyumbang kepada keberkesanan elektrod tersebut telah dikaji. Arang daripada batang kelapa, kayu getah, tebu, kayu bakau, dan arang teraktif komersial yang dicampurkan dalam elektrod komposit tin mampu menguraikan Reaktif Oren 16 masing-masing sehingga 98.5%, 96.2% 83.0%, 71.2% dan 29.6% selepas 20 min elektrolisis. Penguraian ini meningkat dengan pemanjangan tempoh masa elektrolisis. Hasil kajian menunjukkan bahawa penghasilan ion hipoklorit daripada larutan natrium klorida merupakan faktor utama yang menyebabkan peningkatan dalam penyahwarnaan Reaktif Oren 16. Proses penjerapan pada permukaan elektrod tidak memainkan peranan penting dalam penyahwarnaan pewarna yang digunakan.

 

Kata kunci: Elektrolisis; komposit; penyahwarnaan; reaktif oren 16; sisa pertanian

RUJUKAN

Achaw, O.W. 2012. A study of the porosity of activated carbons using the scanning electron microscope. Croatia: INTECH Open Access Publisher. DOI: 10.5772/36337.

Abdollahi, M. & Hosseini, A. 2014. Encyclopedia of Toxicology. Oxford: Academic Press.

Ahmedna, M., Marshall, W. & Rao, R. 2000. Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresource Technology 71: 113-123.

Alvares, A., Diaper, C. & Parsons, S. 2001. Partial oxidation by ozone to remove recalcitrance from wastewaters - A review. Environmental Technology 22: 409-427.

Andrade, L.S., Tasso, T.T., Da Silva, D.L., Rocha-Filho, R.C., Bocchi, N. & Biaggio, S.R. 2009. On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the Reactive Orange 16 dye. Electrochimica Acta 54: 2024-2030.

Avgul, N., Kiselev, A. & Walker Jr., P. 1970. Chemistry and Physics of Carbon. New York: Dekker.

Bauer, C., Jacques, P. & Kalt, A. 2001. Photo-oxidation of an azo dye induced by visible light incident on the surface of TiO2. Journal of Photochemistry and Photobiology A: Chemistry 140: 87-92.

Chatzisymeon, E., Xekoukoulotakis, N.P., Coz, A., Kalogerakis, N. & Mantzavinos, D. 2006. Electrochemical treatment of textile dyes and dyehouse effluents. Journal of Hazardous Materials 137: 998-1007.

Chen, C.Y. 2009. Photocatalytic degradation of azo dye Reactive Orange 16 by TiO2. Water, Air, and Soil Pollution 202: 335- 342.

Chen, G. 2004. Electrochemical technologies in wastewater treatment. Separation and Purification Technology 38: 11-41.

Chung, K.T. & Stevens, S.E. 1993. Degradation azo dyes by environmental microorganisms and helminths. Environmental Toxicology and Chemistry 12: 2121-2132.

Doble, M. & Kumar, A. 2005. Biotreatment of Industrial Effluents. United Kingdom: Butterworth-Heinemann.

Fernandes, A., Morão, A., Magrinho, M., Lopes, A. & Gonçalves, I. 2004. Electrochemical degradation of C.I. Acid Orange 7. Dyes and Pigments 61: 287-296.

Hach. 2004. DR/2400 Spectrophotometer Procedure Manual. USA: Hach Company.

Iqbal, M.J. & Ashiq, M.N. 2007. Adsorption of dyes from aqueous solutions on activated charcoal. Journal of Hazardous Materials 139: 57-66.

Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., Valle, J.O.D. & Fernández-Pereira, C. 2008. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chemical Engineering Journal 144: 42-50.

Karthick, S., Kwon, S.J., Lee, H.S., Muralidhar, S., Saraswathy, V. & Natarajan, N. 2017. Fabrication and evaluation of a highly durable and reliable chloride monitoring sensor for civil infrastructure. Royal Society of Chemistry Advances 7: 31252-31263.

Lalhruaitluanga, H., Prasad, M.N.V. & Radha, K. 2011. Potential of chemically activated and raw charcoals of Melocanna baccifera for removal of Ni(II) and Zn(II) from aqueous solutions. Desalination 271: 301-308.

Lee, J.W., Choi, S.P., Thiruvenkatachari, R., Shim, W.G. & Moon, H. 2006. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and Pigments 69: 196-203.

Liakou, S., Pavlou, S. & Lyberatos, G. 1997. Ozonation of azo dyes. Water Science and Technology 35: 279-286.

Lokman, F. 2006. Dye removal from simulated wastewater by using empty fruit bunch as an adsorption agent. Thesis PhD, Universiti Malaysia Pahang (Unpublished).

Maljaei, A., Arami, M. & Mahmoodi, N.M. 2009. Decolorization and aromatic ring degradation of colored textile wastewater using indirect electrochemical oxidation method. Desalination 249: 1074-1078.

Martinez-Huitle, C.A. & Ferro, S. 2006. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chemical Society Reviews 35: 1324-1340.

Migliorini, F.L., Braga, N.A., Alves, S.A., Lanza, M.R.V., Baldan, M.R. & Ferreira, N.G. 2011. Anodic oxidation of wastewater containing the Reactive Orange 16 dye using heavily boron-doped diamond electrodes. Journal of Hazardous Materials 192: 1683-1689.

Mohan, N., Balasubramanian, N. & Basha, C.A. 2007. Electrochemical oxidation of textile wastewater and its reuse. Journal of Hazardous Materials 147: 644-651.

Moore, R.R., Banks, C.E. & Compton, R.G. 2004. Basal plane pyrolytic graphite modified electrodes: Comparison of carbon nanotubes and graphite powder as electrocatalysts. Analytical Chemistry 76: 2677-2682.

Nahil, M.A. & Williams, P.T. 2012. Surface chemistry and porosity of nitrogen-containing activated carbons produced from acrylic textile waste. Chemical Engineering Journal 184: 228-237.

Neti, N.R. & Misra, R. 2012. Efficient degradation of Reactive Blue 4 in carbon bed electrochemical reactor. Chemical Engineering Journal 184: 23-32.

Nigam, P., Banat, I.M., Singh, D. & Marchant, R. 1996. Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry 31: 435-442.

Öğütveren, Ü.B. & Koparal, S. 1994. Color removal from textile effluents by electrochemical destruction. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology 29: 1-16.

Paszczynski, A. & Crawford, R.L. 1995. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnology Progress 11: 368-379.

Parsa, J.B., Rezaei, M. & Soleymani, A.R. 2009. Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics. Journal of Hazardous Materials 168: 997-1003.

Pavia, D., Lampman, G., Kriz, G. & Vyvyan, J. 2008. Introduction to Spectroscopy. USA: Cengage Learning.

Pelegrini, R., Peralta-Zamora, P., De Andrade, A.R., Reyes, J. & Durán, N. 1999. Electrochemically assisted photocatalytic degradation of reactive dyes. Applied Catalysis B: Environmental 22: 83-90.

Pourmand, S., Abdouss, M. & Rashidi, A. 2015. Preparation of nanoporous graphene via nanoporous zinc oxide and its application as a nanoadsorbent for benzene, toluene and xylenes removal. International Journal of Environmental Research 9: 1269-1276.

Raghu, S., Lee, C.W., Chellammal, S., Palanichamy, S. & Basha, C.A. 2009. Evaluation of electrochemical oxidation techniques for degradation of dye effluents - A comparative approach. Journal of Hazardous Materials 171: 748-754.

Rajeshwar, K. & Ibanez, J.G. 1997. Fundamentals and Applications in Pollution Abatement. San Diego: Academic Press.

Rajkumar, D. & Kim, J.G. 2006. Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. Journal of Hazardous Materials 136: 203-212.

Rashidi, H.R., Sulaiman, N.M., Hashim, N.A. & Che Hassan, C.R. 2012. Synthetic batik wastewater pre-treatment progress by using physical treatment. Advanced Materials Research 627: 394-398.

Robinson, T., McMullan, G., Marchant, R. & Nigam, P. 2001. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology 77: 247-255.

Riyanto, Salimon, J. & Othman, M.R. 2007. Perbandingan hasil pengoksidaan elektrokimia etanol dalam larutan alkali yang menggunakan elektrod platinumpolivinilklorida (Pt-PVC) dan kepingan logam Pt. Sains Malaysiana 36(2): 175-181.

Puvaneswari, N., Muthukrishnan, J. & Gunasekaran, P. 2006. Toxicity assessment and microbial degradation of azo dyes. Indian Journal of Experimental Biology 44: 618-626.

Salehin, S., Aburizaiza, A. & Barakat, M. 2015. Recycling of residual oil fly ash: Synthesis and characterization of activated carbon by physical activation methods for heavy metals adsorption. International Journal of Environmental Research 9: 1201-1210.

Sakkayawong, N., Thiravetyan, P. & Nakbanpote, W. 2005. Adsorption mechanism of synthetic reactive dye wastewater by chitosan. Journal of Colloid and Interface Science 286: 36-42.

Saxe, J.P., Lubenow, B.L., Chiu, P.C., Huang, C.P. & Cha, D.K. 2006. Enhanced biodegradation of azo dyes using an integrated elemental iron-activated sludge system: II. Effects of physical-chemical parameters. Water Environment Research 78: 26-30.

Šíma, J. & Hasal, P. 2013. Photocatalytic degradation of textile dyes in a TiO2/UV system. Chemical Engineering Transactions 32: 79-84.

Sharma, S., Sharma, S., Pathak, S. & Sharma, K.P. 2003. Toxicity of the azo dye methyl red to the organisms in microcosms, with special reference to the guppy (Poecilia reticulata Peters). Bulletin of Environmental Contamination and Toxicology 70: 753-760.

Tan, W., Ooi, S. & Lee, C. 1993. Removal of chromium (VI) from solution by coconut husk and palm pressed fibres. Environmental Technology 14: 277-282.

Tizaoui, C. & Grima, N. 2011. Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution. Chemical Engineering Journal 173: 463-473.

Timur, S., Kantarli, I.C., Onenc, S. & Yanik, J. 2010. Characterization and application of activated carbon produced from oak cups pulp. Journal of Analytical and Applied Pyrolysis 89: 129-136.

Tsai, W.T., Lee, M.K. & Chang, Y.M. 2006. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis 76: 230-237.

Wang, S. & Li, H. 2007. Kinetic modelling and mechanism of dye adsorption on unburned carbon. Dyes and Pigments 72: 308-314.

Willmott, N., Guthrie, J. & Nelson, G. 1998. The biotechnology approach to colour removal from textile effluent. Journal of the Society of Dyers and Colourists 114: 38-41.

Wu, X., Yang, X., Wu, D. & Fu, R. 2008. Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three-dimensional electrode reactor. Chemical Engineering Journal 138: 47-54.

Xiong, Y.A., Strunk, P.J., Xia, H., Zhu, X. & Karlsson, H.T. 2001. Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode. Water Research 35: 4226-4230.

Xu, L., Zhao, H., Shi, S., Zhang, G. & Ni, J. 2008. Electrolytic treatment of C.I. Acid Orange 7 in aqueous solution using a three-dimensional electrode reactor. Dyes and Pigments 77: 158-164.

Xu, Y., Lebrun, R.E., Gallo, P.J. & Blond, P. 1999. Treatment of textile dye plant effluent by nanofiltration membrane. Separation Science and Technology 34: 2501-2519.

Zakaria, Z., Nordin, N., Hasan, S.Z., Baharuddin, N.A., Jumaah, M.A. & Othman, M.R. 2015. Decolorization of Reactive Orange 16 dye using fabricated charcoal base metallic composite electrode. Malaysian Journal of Analytical Sciences 19: 493-502.

Zollinger, H. 2003. Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments. 3rd ed. Weinheim: Wiley-VCH.

 

*Pengarang untuk surat-menyurat; email: p88955@siswa.ukm.edu.my

 

 

 

sebelumnya