Sains Malaysiana 48(4)(2019): 791–801
http://dx.doi.org/10.17576/jsm-2019-4804-11
Electrochemical Degradation of Reactive
Orange 16 by using Charcoal-Based Metallic Composite Electrodes
(Penguraian Elektrokimia Reaktif Oren 16
Menggunakan Elektrod Komposit Logam Berasaskan Arang)
ZUHAILIE ZAKARIA1,2, MOHAMED ROZALI OTHMAN1, SITI ZUBAIDAH HASAN3*
& WAN YAACOB WAN AHMAD1
1School of Chemical
Science and Food Technology, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Production Audit
Department, Syarikat Air Terengganu Sdn. Bhd., 20200 Kuala Terengganu, Terengganu
Darul Iman, Malaysia
3Research Centre for
Sustainable Development Technology, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Diserahkan:
19 September 2018/Diterima: 23 Januari 2019
ABSTRACT
The performance of charcoal
composite electrodes, by using commercial activated charcoal and charcoals from
coconut trunk, mangrove wood, rubber wood, and sugarcane, was compared in an
attempt to fabricate effective and low cost electrodes for wastewater treatment
in textile industries. Reactive Orange 16 was chosen as a model dye because of
its high resistance towards conventional treatment methods, while sodium
chloride was selected as a supporting electrolyte. The electrode efficiencies
were determined based on the percentage of Reactive Orange 16 decolourisation.
The charcoals used, duration of electrolysis, functional groups present in
charcoals, Brunauer-Emmett-Teller surface area and production of hypochlorite
ion that contribute to the effectiveness of the electrodes were examined. The
coconut trunk, rubber wood, sugarcane, mangrove wood, and commercially
available activated charcoals that were incorporated into tin composite
electrodes were able to degrade Reactive Orange 16 until 98.5%, 96.2%, 83.0%,
71.2%, and 29.6%, respectively, after 20 min of electrolysis. The degradation
increases with duration of electrolysis. This study illustrated that the
production of hypochlorite ion from sodium chloride in solution was the main factor
that enhanced the Reactive Orange 16 colour removal. Adsorption process on the
electrode surface did not play any significant role in the dye decolourisation.
Keywords: Agricultural waste;
composite; decolourisation; electrolysis; reactive orange 16
ABSTRAK
Prestasi elektrod komposit berasaskan arang
dengan menggunakan arang teraktif komersial dan arang daripada
batang kelapa, kayu bakau, kayu getah dan tebu telah dibandingkan
dalam satu percubaan untuk menghasilkan elektrod yang berkesan
dan berkos rendah bagi perawatan air sisa industri tekstil. Reaktif Oren
16 dipilih sebagai pewarna ujian kerana ketahanannya yang tinggi
terhadap kaedah perawatan konvensional manakala natrium klorida
dipilih sebagai elektrolit penyokong. Keberkesanan
elektrod ditentukan berdasarkan peratus penyahwarnaan Reaktif
Oren 16. Jenis arang yang digunakan, tempoh masa elektrolisis,
kumpulan berfungsi yang wujud dalam arang, luas permukaan Brunauer-Emmett-Teller
dan penghasilan ion hipoklorit yang menyumbang kepada keberkesanan
elektrod tersebut telah dikaji. Arang daripada batang kelapa,
kayu getah, tebu, kayu bakau, dan arang teraktif komersial yang
dicampurkan dalam elektrod komposit tin mampu menguraikan Reaktif
Oren 16 masing-masing sehingga 98.5%, 96.2% 83.0%, 71.2% dan 29.6%
selepas 20 min elektrolisis. Penguraian ini
meningkat dengan pemanjangan tempoh masa elektrolisis.
Hasil kajian menunjukkan bahawa penghasilan
ion hipoklorit daripada larutan natrium klorida merupakan faktor
utama yang menyebabkan peningkatan dalam penyahwarnaan Reaktif
Oren 16. Proses penjerapan pada permukaan elektrod tidak
memainkan peranan penting dalam penyahwarnaan pewarna yang digunakan.
Kata kunci: Elektrolisis; komposit; penyahwarnaan; reaktif oren 16; sisa pertanian
RUJUKAN
Achaw, O.W.
2012. A study of the porosity of activated carbons using the scanning electron
microscope. Croatia: INTECH Open Access Publisher. DOI: 10.5772/36337.
Abdollahi, M. & Hosseini, A. 2014. Encyclopedia of Toxicology. Oxford: Academic
Press.
Ahmedna, M., Marshall, W. & Rao, R. 2000. Production
of granular activated carbons from select agricultural by-products and
evaluation of their physical, chemical and adsorption properties. Bioresource
Technology 71: 113-123.
Alvares, A.,
Diaper, C. & Parsons, S. 2001. Partial oxidation by ozone
to remove recalcitrance from wastewaters - A review. Environmental
Technology 22: 409-427.
Andrade,
L.S., Tasso, T.T., Da Silva, D.L., Rocha-Filho, R.C., Bocchi, N. & Biaggio,
S.R. 2009. On the performances of lead dioxide and boron-doped diamond
electrodes in the anodic oxidation of simulated wastewater containing the
Reactive Orange 16 dye. Electrochimica Acta 54: 2024-2030.
Avgul, N.,
Kiselev, A. & Walker Jr., P. 1970. Chemistry and
Physics of Carbon. New York: Dekker.
Bauer, C., Jacques, P. & Kalt, A. 2001. Photo-oxidation of an azo dye induced by visible light incident on the surface
of TiO2. Journal of Photochemistry and Photobiology A:
Chemistry 140: 87-92.
Chatzisymeon, E., Xekoukoulotakis, N.P., Coz, A., Kalogerakis, N.
& Mantzavinos, D. 2006. Electrochemical
treatment of textile dyes and dyehouse effluents. Journal of
Hazardous Materials 137: 998-1007.
Chen, C.Y.
2009. Photocatalytic degradation of azo dye Reactive Orange
16 by TiO2. Water, Air, and Soil Pollution 202: 335-
342.
Chen, G. 2004. Electrochemical
technologies in wastewater treatment. Separation and Purification
Technology 38: 11-41.
Chung, K.T.
& Stevens, S.E. 1993. Degradation azo dyes by
environmental microorganisms and helminths. Environmental Toxicology
and Chemistry 12: 2121-2132.
Doble, M. & Kumar, A. 2005. Biotreatment of Industrial Effluents. United
Kingdom: Butterworth-Heinemann.
Fernandes,
A., Morão, A., Magrinho, M., Lopes, A. & Gonçalves, I. 2004. Electrochemical
degradation of C.I. Acid Orange 7. Dyes and Pigments 61: 287-296.
Hach. 2004. DR/2400 Spectrophotometer
Procedure Manual. USA: Hach Company.
Iqbal, M.J. & Ashiq, M.N. 2007.
Adsorption of dyes from aqueous solutions on activated charcoal. Journal of
Hazardous Materials 139: 57-66.
Kalderis, D.,
Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., Valle, J.O.D.
& Fernández-Pereira, C. 2008. Adsorption of polluting substances on activated carbons prepared from rice husk
and sugarcane bagasse. Chemical Engineering Journal 144: 42-50.
Karthick, S., Kwon,
S.J., Lee, H.S., Muralidhar, S., Saraswathy, V. & Natarajan, N. 2017. Fabrication and evaluation of a highly
durable and reliable chloride monitoring sensor for
civil infrastructure. Royal Society of Chemistry Advances 7:
31252-31263.
Lalhruaitluanga, H., Prasad, M.N.V. &
Radha, K. 2011. Potential of chemically activated and raw charcoals of Melocanna
baccifera for removal of Ni(II) and Zn(II) from
aqueous solutions. Desalination 271: 301-308.
Lee, J.W., Choi, S.P.,
Thiruvenkatachari, R., Shim, W.G. & Moon, H. 2006. Evaluation of the performance of
adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes
and Pigments 69: 196-203.
Liakou, S., Pavlou, S.
& Lyberatos, G. 1997. Ozonation of azo dyes. Water Science and Technology 35: 279-286.
Lokman, F. 2006. Dye removal from simulated wastewater by
using empty fruit bunch as an adsorption agent. Thesis PhD,
Universiti Malaysia Pahang (Unpublished).
Maljaei, A., Arami, M.
& Mahmoodi, N.M. 2009. Decolorization and aromatic ring degradation of colored
textile wastewater using indirect electrochemical oxidation method. Desalination 249: 1074-1078.
Martinez-Huitle, C.A. & Ferro, S.
2006. Electrochemical oxidation of organic pollutants for the wastewater
treatment: Direct and indirect processes. Chemical Society Reviews 35:
1324-1340.
Migliorini, F.L.,
Braga, N.A., Alves, S.A., Lanza, M.R.V., Baldan, M.R. & Ferreira, N.G.
2011. Anodic oxidation of wastewater containing the Reactive Orange 16
dye using heavily boron-doped diamond electrodes. Journal of
Hazardous Materials 192: 1683-1689.
Mohan, N.,
Balasubramanian, N. & Basha, C.A. 2007. Electrochemical
oxidation of textile wastewater and its reuse. Journal of Hazardous
Materials 147: 644-651.
Moore, R.R., Banks,
C.E. & Compton, R.G. 2004. Basal plane pyrolytic graphite modified electrodes: Comparison of carbon
nanotubes and graphite powder as electrocatalysts. Analytical Chemistry 76:
2677-2682.
Nahil, M.A. & Williams, P.T. 2012.
Surface chemistry and porosity of nitrogen-containing activated carbons
produced from acrylic textile waste. Chemical Engineering Journal 184:
228-237.
Neti, N.R. & Misra, R. 2012. Efficient degradation of Reactive Blue 4 in carbon bed
electrochemical reactor. Chemical Engineering Journal 184: 23-32.
Nigam, P., Banat, I.M.,
Singh, D. & Marchant, R. 1996. Microbial process for the decolorization of textile effluent
containing azo, diazo and reactive dyes. Process Biochemistry 31:
435-442.
Öğütveren, Ü.B.
& Koparal, S. 1994. Color removal from textile effluents by electrochemical destruction. Journal of Environmental Science and Health. Part
A: Environmental Science and Engineering and Toxicology 29: 1-16.
Paszczynski, A. & Crawford, R.L.
1995. Potential for bioremediation of xenobiotic compounds by
the white-rot fungus Phanerochaete chrysosporium. Biotechnology
Progress 11: 368-379.
Parsa, J.B., Rezaei, M. & Soleymani,
A.R. 2009. Electrochemical oxidation of an azo dye in aqueous
media investigation of operational parameters and kinetics. Journal
of Hazardous Materials 168: 997-1003.
Pavia, D., Lampman, G.,
Kriz, G. & Vyvyan, J. 2008. Introduction to Spectroscopy. USA:
Cengage Learning.
Pelegrini, R.,
Peralta-Zamora, P., De Andrade, A.R., Reyes, J. & Durán, N. 1999. Electrochemically assisted
photocatalytic degradation of reactive dyes. Applied Catalysis B:
Environmental 22: 83-90.
Pourmand, S., Abdouss,
M. & Rashidi, A. 2015. Preparation of nanoporous graphene via nanoporous zinc oxide
and its application as a nanoadsorbent for benzene, toluene and xylenes
removal. International Journal of Environmental Research 9:
1269-1276.
Raghu, S., Lee, C.W., Chellammal, S.,
Palanichamy, S. & Basha, C.A. 2009. Evaluation of electrochemical oxidation
techniques for degradation of dye effluents - A comparative approach. Journal
of Hazardous Materials 171: 748-754.
Rajeshwar, K. & Ibanez, J.G. 1997. Fundamentals and Applications in Pollution Abatement. San Diego: Academic Press.
Rajkumar, D. & Kim, J.G. 2006. Oxidation of various reactive dyes with in situ electro-generated
active chlorine for textile dyeing industry wastewater treatment. Journal
of Hazardous Materials 136: 203-212.
Rashidi, H.R., Sulaiman, N.M., Hashim,
N.A. & Che Hassan, C.R. 2012. Synthetic batik wastewater
pre-treatment progress by using physical treatment. Advanced
Materials Research 627: 394-398.
Robinson, T., McMullan, G., Marchant, R.
& Nigam, P. 2001. Remediation of dyes in textile effluent: A critical review
on current treatment technologies with a proposed alternative. Bioresource
Technology 77: 247-255.
Riyanto, Salimon, J. & Othman, M.R.
2007. Perbandingan hasil pengoksidaan elektrokimia etanol
dalam larutan alkali yang menggunakan elektrod platinumpolivinilklorida
(Pt-PVC) dan kepingan logam Pt. Sains Malaysiana 36(2): 175-181.
Puvaneswari, N., Muthukrishnan, J. &
Gunasekaran, P. 2006. Toxicity assessment and microbial
degradation of azo dyes. Indian Journal of Experimental Biology 44:
618-626.
Salehin, S.,
Aburizaiza, A. & Barakat, M. 2015. Recycling of residual oil fly ash: Synthesis and
characterization of activated carbon by physical activation methods for heavy
metals adsorption. International Journal of Environmental Research 9:
1201-1210.
Sakkayawong, N.,
Thiravetyan, P. & Nakbanpote, W. 2005. Adsorption mechanism of synthetic
reactive dye wastewater by chitosan. Journal of Colloid and Interface
Science 286: 36-42.
Saxe, J.P., Lubenow,
B.L., Chiu, P.C., Huang, C.P. & Cha, D.K. 2006. Enhanced biodegradation of azo dyes
using an integrated elemental iron-activated sludge system: II. Effects of physical-chemical parameters. Water
Environment Research 78: 26-30.
Šíma, J. &
Hasal, P. 2013. Photocatalytic degradation of textile dyes in a TiO2/UV system. Chemical
Engineering Transactions 32: 79-84.
Sharma, S., Sharma, S.,
Pathak, S. & Sharma, K.P. 2003. Toxicity of the azo dye methyl red to the organisms in
microcosms, with special reference to the guppy (Poecilia reticulata Peters). Bulletin of Environmental Contamination and Toxicology 70: 753-760.
Tan, W., Ooi, S. & Lee, C. 1993.
Removal of chromium (VI) from solution by coconut husk and palm pressed fibres. Environmental Technology 14: 277-282.
Tizaoui, C. & Grima, N. 2011.
Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution. Chemical Engineering Journal 173: 463-473.
Timur, S., Kantarli,
I.C., Onenc, S. & Yanik, J. 2010. Characterization and application of activated carbon
produced from oak cups pulp. Journal of Analytical and Applied Pyrolysis 89:
129-136.
Tsai, W.T., Lee, M.K.
& Chang, Y.M. 2006. Fast pyrolysis of rice straw, sugarcane bagasse and coconut
shell in an induction-heating reactor. Journal of Analytical and
Applied Pyrolysis 76: 230-237.
Wang, S. & Li, H. 2007. Kinetic modelling and mechanism of dye adsorption on unburned
carbon. Dyes and Pigments 72: 308-314.
Willmott, N., Guthrie,
J. & Nelson, G. 1998. The biotechnology approach to colour removal from textile
effluent. Journal of the Society of Dyers and Colourists 114:
38-41.
Wu, X., Yang, X., Wu,
D. & Fu, R. 2008. Feasibility study of using carbon aerogel as particle electrodes for
decoloration of RBRX dye solution in a three-dimensional electrode reactor. Chemical
Engineering Journal 138: 47-54.
Xiong, Y.A., Strunk, P.J., Xia, H., Zhu,
X. & Karlsson, H.T. 2001. Treatment of dye wastewater
containing acid orange II using a cell with three-phase three-dimensional
electrode. Water Research 35: 4226-4230.
Xu, L., Zhao, H., Shi, S., Zhang, G.
& Ni, J. 2008. Electrolytic treatment of C.I. Acid Orange
7 in aqueous solution using a three-dimensional electrode reactor. Dyes
and Pigments 77: 158-164.
Xu, Y., Lebrun, R.E., Gallo, P.J. &
Blond, P. 1999. Treatment of textile dye plant effluent by
nanofiltration membrane. Separation Science and Technology 34:
2501-2519.
Zakaria, Z., Nordin,
N., Hasan, S.Z., Baharuddin, N.A., Jumaah, M.A. & Othman, M.R. 2015. Decolorization of Reactive Orange 16 dye
using fabricated charcoal base metallic composite electrode. Malaysian
Journal of Analytical Sciences 19: 493-502.
Zollinger, H. 2003. Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments. 3rd
ed. Weinheim: Wiley-VCH.
*Pengarang untuk
surat-menyurat; email: p88955@siswa.ukm.edu.my