Sains Malaysiana 48(4)(2019): 803–811
http://dx.doi.org/10.17576/jsm-2019-4804-12
Application of K-Impregnated Staghorn Coral as
Catalyst in the Transesterification of Waste Cooking Oil
(Penggunaan K-Impregnasi Batu Karang Staghorn
sebagai Pemangkin dalam Transesterifikasi Sisa Minyak Masak)
NABILAH ATIQAH ZUL1,2, SHANGEETHA GANESAN1 & M. HAZWAN HUSSIN1,2*
1School of Chemical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
2Materials Technology
Research Group (MaTReC), School of Chemical Sciences, Universiti Sains
Malaysia, 11800 Minden, Pulau Pinang, Malaysia
Diserahkan:
20 Disember 2018/Diterima: 7 Februari 2019
ABSTRACT
This work focuses on the catalytic
potential of K-impregnated staghorn coral as a catalyst in methyl esters
production via methanolysis of waste cooking oil (WCO). The prepared catalyst was analyzed by Hammett indicators, XRF,
Brunauer-Emmett-Teller (BET)-N2 adsorption
method, ATR-FTIR, TGA, XRD and SEM to determine its physicochemical properties. ATR-FTIR and XRD results confirmed the formation of
K2O
species upon KOH impregnation, thus, resulting in good catalytic
activity. Reaction parameters such as methanol to oil ratio, reaction time and
amount of catalyst were evaluated to find out the best conditions for the
transesterification process. About 89.51 ± 4.78 % of biodiesel contents were
obtained under the optimum conditions.
Keywords: Biodiesel; staghorn coral;
transesterification; waste cooking oil
ABSTRAK
Kajian ini
memfokuskan potensi pemangkin K-impregnasi batu karang staghorn sebagai
pemangkin dalam penghasilan metil ester melalui metanolisis sisa minyak masak (WCO). Pemangkin yang telah disediakan telah dianalisis oleh penunjuk
Hammette, XRF, kaedah Brunauer-Emmett-Teller (BET)-penjerapan
N2, ATR-FTIR, TGA, XRD dan SEM untuk menentukan sifat fiziokimianya. Keputusan ATR-FTIR dan XRD mengesahkan pembentukan spesies K2O
apabila impregnasi KOH, sehingga menghasilkan aktiviti
pemangkin yang baik. Parameter tindak balas seperti nisbah metanol kepada
minyak, masa tindak balas dan jumlah pemangkin telah dinilai untuk mengetahui
keadaan terbaik untuk proses transesterifikasi. Sebanyak
89.51 ± 4.78 % kandungan biodiesel telah diperoleh di bawah keadaan optimum.
Kata kunci: Batu karang staghorn; biodiesel; sisa minyak masak;
transesterifikasi
RUJUKAN
Attaphong,
C., Do, L. & Sabatini, D. 2012. Vegetable oil-based microemulsions using
carboxylate-based extended surfactants and their potential as an alternative
renewable biofuel. Fuel 94: 606-613.
Bajpai, D.
& Tyagi, V.K. 2006. Biodiesel: Source, production, composition, properties
and its benefits. J. Oleo Sci. 55: 487-502.
Baroutian, S., Aroua, M.K., Raman, A.A.A. & Sulaiman, N.M.N.
2010. Potassium hydroxide catalyst supported on palm shell activated
carbon for transesterification of palm oil. Fuel Process. Technol. 91: 1378-1385.
Bazargan, A., Kostic, M.D., Stamenkovic, O.S., Veljkovic, V.B.
& McKay, G. 2015. A calcium oxide-based catalyst derived from
palm kernel shell gasification residues for biodiesel production. Fuel 150:
519-525.
Birla, A., Singh, B., Upadhyay, S.N. & Sharma, Y.C. 2012. Kinetics
studies of synthesis of biodiesel from waste frying oil using a heterogeneous
catalyst derived from snail shell. Bioresour. Technol. 106: 95-100.
Boey, P.L.,
Maniam, G.P., Hamid, S.A. & Ali, D.M.H. 2011. Crab and cockle shells as
catalysts for the preparation of methyl esters from low free fatty acid chicken
fat. J. Am. Oil Chem. Soc. 88: 283-288.
Boro, J.,
Konwar, L.J. & Deka, D. 2014. Transesterification of non-edible feedstock
with lithium incorporated eggshell derived CaO for
biodiesel production. Fuel Process. Technol. 122: 72-78.
Boro, J.,
Thakur, A.J. & Deka, D. 2011. Solid oxide derived from waste shells of Turbonilla
striatula as a renewable catalyst for biodiesel production. Fuel
Process. Technol. 92:
2061-2067.
Buasri, A., Chaiyut, N., Loryuenyong, V., Rodklum, C., Chaikwan,
T., Kumphan, N., Jadee, K., Klinklom, P. & Wittayarounayut, W. 2012. Transesterification of waste frying oil for synthesizing biodiesel
by KOH supported on coconut shell activated carbon in packed bed reactor. ScienceAsia 38: 283-288.
Canesin, E.A., Oliveira, C.C.D., Matsushita, M., Dias, L.F.,
Pedrao, M.R. & Souza, N.E.D. 2014. Characterization
of residual oils for biodiesel production. Electron. J. Biotechnol. 17:
39-45.
Cetinkaya, M. & Karaosmanoglu, F. 2004. Optimization of base-catalyzed transesterification reaction of used cooking
oil. Energy Fuels 18: 1888-1895.
Degirmenbasi, N., Coskun, S., Boz, N. & Kalyon, D.M. 2015. Biodiesel
synthesis from canola oil via heterogeneous catalysis using functionalized CaO
nanoparticles. Fuel 153: 620-627.
Demirbas, A. 2009. Progress and
recent trends in biodiesel fuels. Energy Convers. Manage. 50: 14-34.
Eevera, T., Rajendran, K.
& Saradha, S. 2009. Biodiesel production process optimization and
characterization to assess the suitability of the product for varied
environmental conditions. Renew. Energy 34: 762-765.
Ekeoma, M.O., Okoye, P.A.C., Ajiwe, V.I.E. & Hameed, B.H.
2017. Murex turnispina shell as catalyst for bio-diesel
production. Int. Res. J. Pure Appl. Chem. 14:
1-13.
Freedman,
B., Pryde, E.H. & Mounts, T.L. 1984. Variables affecting
the yields of fatty esters from transesterified vegetable oils. J.
Am. Oil Chem. Soc. 61: 1638-1643.
Hassan, M.H. &
Kalam, M.A. 2013. An overview of biofuel as a renewable energy source:
Development and challenges. Procedia Eng. 56: 39-53.
Huang,
D., Zhou, H. & Lin, L. 2012. Biodiesel: An alternative to conventional fuel. Energy Procedia 16: 1874-1885.
Javidialesaadi, A. &
Raeissi, S. 2013. Biodiesel production from high free fatty acid-content oils:
Experimental investigation of the pretreatment step. APCBEE Procedia. 5: 474-478.
Kabo, K.S., Yacob, A.R.,
Bakar, W.A.W.A., Buang, N.A., Bello, A.M. & Ruskam, A. 2015. BBD optimization of K-ZnO catalyst modification process for
heterogeneous transesterification of rice bran oil to biodiesel. Soft Soil Engineering International Conference 2015 (SEIC2015). Langkawi, Malaysia. 012063.
Kahng,
S.E., Garcia-Sais, J.R., Spalding, H.L., Brokovich, E., Wagner, D., Weil, E.,
Hinderstein, L. & Toonen, R.J. 2010. Community ecology of
mesophotic coral reef ecosystems. Coral Reefs 29: 255-275.
Kapilan,
N., Babu, T.P.A. & Reddy, R.P. 2009. Technical aspects of
biodiesel and its oxidation stability. Int. J. ChemTech Res. 1:
278-282.
Kataria, J., Mohapatra,
S.K. & Kundu, K. 2017. Biodiesel production from frying
oil using zinc-doped calcium oxide as heterogeneous catalysts. Energ.
Source Part A 39: 861-866.
Kaur,
M. & Ali, A. 2011. Lithium ion impregnated calcium oxide as nano catalyst for
the bio-diesel production from karanja and jatropha oils. Renew. Energy 36: 2866-2871.
Kesic,
Z., Lukic, I., Zdujic, M., Liu, H. & Skala, D. 2012. Mechanochemically
synthesized CaO ZnO catalyst for biodiesel production. Procedia Eng. 42:
1169-1178.
Kumar, D. & Ali, A.
2012. Nanocrystalline K-CaO for the transesterification of a variety of
feedstocks: Structure, kinetics and catalytic properties. Biomass Bioenergy 46:
459-468.
Lam, M.K., Lee, K.T.
& Mohamed, A.R. 2010. Homogenous, heterogenous and
enzymatic catalysis for transesterification of high free fatty acid oil (waste
cooking oil) to biodiesel: A review. Biotechnol. Adv. 28: 500-518.
Leung, D.Y.C. & Guo,
Y. 2006. Transesterification of neat and used frying oil: Optimization for
biodiesel production. Fuel Process. Technol. 87: 883-890.
Liu,
H., Guo, H.S., Wang, X.J., Jiang, J.Z., Lin, H., Han, S. & Pei, S.P. 2016. Mixed and ground
KBr-impregnated calcined snail shell and kaolin as solid base catalysts for
biodiesel production. Renew. Energy 93: 648-657.
Ma, F.
& Hanna, M.A. 1999. Biodiesel production: A review. Bioresour. Technol. 70: 1-15.
Mamat, F.M. & Yacob,
A.R. 2015. Kinetic study of biodiesel using egg shell for base transesterification reaction: http://eprints.utm.my/id/eprint/62086/1/
ZainabRaml i2015_Modif iedDes i l icatedNat u r
alZeoliteasCatalystinKnoevenagelReaction.pdf#page=75. Accessed on 15th
September 2018.
Meher, L.C., Kulkarni,
M.G., Dalai, A.K. & Naik, S.N. 2006. Transesterification
of karanja (Pongamia pinnata) oil by solid basic catalysts. Eur.
J. Lipid Sci. Technol. 108: 389-397.
Modiba,
E., Enweremadu, C. & Rutto, H. 2015. Production of biodiesel from waste
vegetable oil using impregnated diatomite as heterogeneous catalyst. Chin.
J. Chem. 23: 281-289.
Moradi,
G. & Mohammadi, F. 2014. Utilization of waste coral
for biodiesel production via transesterification of soybean oil. Int.
J. Environ. Sci. Technol. 11: 805-812.
Mutreja,
V., Singh, S. & Ali, A. 2011. Biodiesel from mutton fat using KOH impregnated
MgO as heterogeneous catalysts. Renew. Energy 36: 2253-2258.
Onukwuli, D.O.,
Emembolu, L.N., Ude, C.N., Aliozo, S.O. & Menkiti, M.C. 2017. Optimization
of biodiesel production from refined cotton seed oil
and its characterization. Egypt. J. Petrol. 26:
103-110.
Otadi,
M., Shahraki, A., Goharrokhi, M. & Bandarchian, F. 2011. Reduction
of free fatty acids of waste oil by acid-catalyzed esterification. Procedia
Eng. 18: 168-174.
Pandolfi, J.M. &
Jackson, J.B.C. 2006. Ecological persistence interrupted in Caribbean coral
reefs. Eco. Lett. 9: 818-826.
Precht, W.F., Bruckner,
A.W., Aronson, R.B. & Bruckner, R.J. 2002. Endangered acroporid corals of
the Caribbean. Coral Reefs 21: 41-42.
Rajalingam,
A., Jani, S.P., Kumar, A.S. & Khan, M.A. 2016. Production
methods of biodiesel. J. Chem. Pharm. Res. 8: 170-173.
Roschat,
W., Kacha, M., Yoosuk, B., Sudyoadsuk, T. & Promarak, V. 2012. Biodiesel
production based on heterogeneous process catalyzed by solid waste coral
fragment. Fuel 98: 194-202.
Ruiz, M.G., Hernandez,
J., Banos, L., Montes, J.N. & Garcia, M.E.R. 2009. Characterization
of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to
the improvement of lime for their use in construction. J. Mater.
Civil Eng. 21: 694-698.
Saxena,
P., Jawale, S. & Joshipura, M.H. 2013. A review on prediction
of properties of biodiesel and blends of biodiesel. Procedia Eng. 51:
395-402.
Sharma, Y.C., Singh, B.
& Korstad, J. 2010. Application of an efficient
nonconventional heterogeneous catalyst for biodiesel synthesis from Pongamia
pinnata oil. Energy Fuels 24: 3223-3231.
Shereena,
K.M. & Thangaraj, T. 2009. Biodiesel: An alternative fuel produced from
vegetable oils by transesterification. Electron. J. Bio. 5: 67-74.
Sinha, D. &
Murugavelh, S. 2016. Biodiesel production from waste cotton
seed oil using low cost catalyst: Engine performance and emission
characteristics. Perspect. Sci. 8: 237-240.
Sirisomboonchai,
S., Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X., Kusakabe, K.
& Abudula, A. 2015. Biodiesel production from waste cooking oil using calcined
scallop shell as catalyst. Energy Convers. Manage. 95:
242-247.
Suryaputra, W., Winata,
I., Indraswati, N. & Ismadji, S. 2013. Waste capiz (Amusium cristatum)
shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy 50: 795-799.
Tan, Y.H., Abdullah,
M.O., Nolasco-Hipolito, C. & Taufiq- Yap, Y.H. 2015. Waste ostrich- and chicken-egg shells as
heterogeneous base catalyst for biodiesel production from used cooking oil:
Catalyst characterization and biodiesel yield performance. Appl. Energy 160:
58-70.
Viriya-Empikul, N.,
Krasae, P., Nualpaeng, W., Yoosuk, B. & Faungnawakij, K. 2012. Biodiesel production over Ca-based solid
catalysts derived from industrial wastes. Fuel 92: 239-244.
Watkins, R.S., Lee,
A.F. & Wilson, K. 2004. Li-CaO catalysed tri-glyceride transesterification for biodiesel applications. Green
Chem. 6: 335-340.
Wu, H., Zhang, J., Wei, Q., Zheng, J.
& Zhang, J. 2013. Transesterification of soybean oil to biodiesel using
zeolite supported CaO as strong base catalysts. Fuel Process. Technol. 109: 13-18.
Xie, W. & Huang, X.
2006. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO
catalyst. Catal. Lett. 107: 53-59.
Xie, W. & Li, H. 2006. Alumina-supported potassium iodide as a heterogeneous catalyst for
biodiesel production from soybean oil. J. Mol. Catal. A Chem. 255:
1-9.
Yacob, A.R., Muda, N.W. & Zaki,
M.A.M. 2017. Effect of one step activation KOH modified carbon in dimethyl
carbonate transesterification reactions. Malaysian J. Anal. Sci. 21: 820-829.
Zhang, J. & Meng, Q. 2014.
Preparation of KOH/CaO/C supported biodiesel catalyst and application process. World
J. Eng. Technol. 2: 184-191.
Zielinski, J.M. & Kettle, L. 2013. Physical
Characterization: Surface Area and Porosity. London: Intertek. p.1-5.
*Pengarang untuk
surat-menyurat; email: mhh@usm.my