Sains Malaysiana 48(4)(2019): 921–925
http://dx.doi.org/10.17576/jsm-2019-4804-25
Carbon Absorption Control Model of Oil
Palm Plantation
(Model Kawalan Penyerapan Karbon Ladang Kelapa
Sawit)
NORYANTI NASIR1,2*, MOHD ISMAIL ABD AZIZ1,3 & AKBAR BANITALEBI1,3
1Department of
Mathematical Sciences, Faculty of Sciences, Universiti Teknologi Malaysia,
81310 UTM Skudai, Johor Bahru, Johor Darul Takzim, Malaysia
2Faculty of Computer and
Mathematical Sciences, Universiti Teknologi MARA, Kampus Seremban, Persiaran
Seremban Tiga/1, Seremban 3, 70300 Seremban, Negeri Sembilan Darul Khusus,
Malaysia
3UTM Center for
Industrial and Applied Mathematics, Universiti Teknologi Malaysia, 81310 UTM,
Skudai, Johor Bahru, Johor Darul Takzim, Malaysia
Diserahkan:
7 Januari 2017/Diterima: 28 September 2017
ABSTRACT
Among the largest and growing oil
palm industries, Malaysia plays an important role in the world’s oil market. The contribution of the palm plantation in absorbing carbon from
the atmosphere is also considerable thought, it is
rarely studied. The role of the plantation in balancing carbon dioxide
is significant. However, the ability of palm tree in absorbing carbon may vary
within the lifespan of the plant. Therefore, managing the plantation to reach the
maximum carbon dioxide absorption along with maximum oil production is
challenging. This study is aimed at analyzing the carbon absorption level of
the palm oil plantation. A mathematical model is proposed by considering the
characteristics of palm oil trees in absorbing carbon and producing oil. It is
assumed that the rate of felling can be controlled, and a system of ordinary
differential equations is developed to describe the behaviour of the plantation
in terms of biomass and growth rate dynamics. The resulting parameter
estimation problem is solved which leads to an optimal control problem. The
objective of this problem was to maximize the oil production as well as carbon
absorption. Numerical simulation is illustrated to highlight the application of
the proposed model.
Keywords: Carbon absorption; optimal
control model; palm oil biomass
ABSTRAK
Malaysia
antara negara industri kelapa sawit terbesar dan masih berkembang yang
memainkan peranan penting dalam pasaran minyak dunia. Sumbangan perladangan kelapa sawit dalam menyerap karbon dari
atmosfera amat mustahak, namun jarang dikaji. Walau
bagaimanapun, keupayaan pokok sawit dalam menyerap karbon mungkin berbeza
mengikut jangka hayat tumbuhan. Oleh itu menguruskan
ladang untuk mencapai penyerapan karbon dioksida yang maksimum berserta dengan
pengeluaran minyak maksimum adalah mencabar. Kajian
ini bertujuan untuk menganalisis tahap penyerapan karbon daripada ladang kelapa
sawit. Model matematik adalah dicadangkan dengan
mengambil kira ciri-ciri pokok kelapa sawit dalam menyerap karbon dan
menghasilkan minyak. Ia diandaikan bahawa kadar penebangan boleh dikawal, sistem persamaan pembezaan biasa (ODE)
dibangunkan untuk menerangkan tingkah laku perladangan daripada segi biojisim
dan kadar pertumbuhan dinamik. Keputusan daripada parameter
anggaran membawa kepada penyelesaian masalah kawalan optimum. Objektif masalah ini adalah untuk memaksimumkan pengeluaran minyak
serta penyerapan karbon. Simulasi berangka digambarkan
untuk menyerlahkan aplikasi model yang dicadangkan.
Kata kunci: Kelapa sawit biojisim; model kawalan optimum,
penyerapan karbon
RUJUKAN
Aholoukpè, H., Dubos, B., Flori, A., Deleporte, P., Amadji, G.,
Chotte, J.L. & Blavet, D. 2013. Estimating aboveground biomass of
oil palm: Allometric equations for estimating frond biomass. Forest Ecology
and Management 292: 122- 129.
Al-Amin,
A.Q., Rajah, R. & Chenayah, S. 2015. Prioritizing climate change
mitigation: An assessment using Malaysia to reduce carbon emissions in future. Environmental
Science & Policy 50: 24-33.
Assmuth, A.
& Tahvonen, O. 2015. Continuous cover forestry vs
clearcuts with optimal carbon storage. University of
Helsinki. pp. 1-36.
Backeus, S.,
Wikstrom, P. & Lamas, T. 2006. Modeling carbon sequestration and timber
production in a regional case study. Silva Fennica 40(4): 615-629.
Banitalebi,
A., Mohd Ismail, Abd Aziz., Zainal, Abdul Aziz &
Noryanti Nasir. 2016. Modelling and optimization for palm oil plantation
management. Advances in Industrial and Applied Mathematics: Proceedings
of 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23) 1750:
030046.
Basiron, Y.
2007. Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology 109: 289-295.
Conn, A.R., Scheinberg, K. &Vicente, L.N. 2009. Introduction to Derivative-Free Optimization Book. 1: 277. doi:10.1137/1.9780898718768.
Corley,
R.H.V. & Tinker, P.B. 2003. The Palm Oil. Oxford:
Blackwell Science Ltd
Corley,
R.H.V., Hardon, J.J., Tang, Y. & Tan, G.Y. 1971. Analysis of growth of the
oil palm (Elaeis Guineensis Jacq.) I. estimation of growth parameters and application in breeding. Euphytica 20: 307-315.
Gaoue, O.G.,
Jiang, J., Ding, W., Agusto, F.B. & Lenhart, S. 2016. Optimal
harvesting strategies for timber and non-timber forest products in tropical
ecosystems. Theoretical Ecology 9(3): 287-297.
Germer, J. & Sauerborn, J. 2008. Estimation of the impact of oil palm plantation establishment on
greenhouse gas balance. Environment, Development and Sustainability 10(6):
697- 716.
Goetz, R., Hritonenko, N., Xabadia, A. & Yatsenko, Y. 2007. Using the
escalator boxcar train to determine the optimal management of a
size-distributed forest when carbon sequestration is taken. Large-Scale
Scientific Computing 4818: 334-341.
Hritonenko, N., Yatsenko, Y., Renan-Ulrich, G. & Xabadia, A.
2008. Maximum principle for a size-structured model
of forest and carbon sequestration management. Applied Mathematics
Letters 21(10): 1090-1094.
Jiao, Y.Y., Ren, H.E. & Dong, B.Z. 2011. Optimal
estimation of forest carbon sequestration based on eddy correlation method. Advances
in Computer Science, Intelligent System and Environment 2(105): 421-426.
Jones, D.A.
& O’Hara, K.L. 2012. Carbon density in managed coast redwood stands:
Implications for forest carbon estimation. Forestry 85(1): 99-110.
Kato, N. 2008. Optimal
harvesting for nonlinear size-structured population dynamics. Journal
of Mathematical Analysis and Applications 342(2): 1388-1398.
Khamiz, A., Ismail, Z. & Muhammad, A.T. 2005. Nonlinear
growth models for modeling oil palm yield growth. Journal of Mathematics and
Statistics 1(3): 225-233.
Kho, L.K.
& Jepsen, M.R. 2015. Carbon stock of oil palm plantations and tropical
forests in Malaysia: A review. Singapore Journal of Tropical Geography 36:
249-266.
Kongsager, R., Napier, J. & Mertz, O. 2013. The carbon sequestration potential of tree crop plantations. Mitigation and Adaptation Strategies for Global Change 18(8): 1197-
1213.
Kula, E.
& Gunalay, Y. 2012. Carbon sequestration, optimum forest
rotation and their environmental impact. Environmental
Impact Assessment Review 37(11): 18-22.
Mekhilef, S., Siga, S. & Saidur, R. 2011. A review on palm oil biodiesel as a source of renewable fuel. Renewable and Sustainable Energy Reviews 15(4): 1937-1949.
Patthanaissaranukool,
W., Polprasert, C. & Englande, A.J. 2013. Potential reduction of
carbon emissions from crude palm oil production based on energy and carbon
balances. Applied Energy 102: 710-717.
Pei, W., Ng, Q., Loong,
H., Yuen, F., Kamal, M., Heng, J. & Lim, E. 2012. Waste-to-wealth: Green potential from
palm biomass in Malaysia. Journal of Cleaner Production 34: 57-65.
Pulhina, F.B., Lascob, R.D. &
Urquiolab, J.P. 2014. Carbon sequestration potential of oil
palm in Bohol, Philippines. Ecosystems &
Development Journal 4: 14-19.
Sanquetta, C.R., Pélliconetto, S., Paula,
A., Corte, D., Lourenço, A., Behling, Ale., Niroh, M.
& Sanquetta, I. 2015. Quantifying biomass and carbon stocks in oil palm (Elaeis
guineensis Jacq.) in Northeastern Brazil. African Journal of
Agricultural Research 10(43): 4067-4075.
Sharma, M. 2013. Sustainability in the
cultivation of oil palm-issues & prospects for the industry. Journal of Oil Palm & The Environment An Official
Publication of the Malaysian Palm Oil Council (MPOC) 4: 47-68.
Sohngen, B., Golub, A.
& Hertel, T.W. 2009. The role of forestry in carbon sequestration in general
equilibrium models. Economic Analysis of Land Use in Global Climate
Change Policy 49: 279-303.
Sohngen, B. & Mendelsohn, R. 2003. An optimal control model of forest carbon sequestration. American
Journal of Agricultural Economics 85(2): 448-457.
Somarriba, E., Cerda, R., Orozco, L.,
Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., Ávilaa, G., Alvaradoa, E.,
Povedaa, V., Astorgaa, C., Saya, E. & Deheuvelsb, O. 2013. Carbon stocks
and cocoa yields in agroforestry systems of Central America. Agriculture,
Ecosystems & Environment 173: 46-57.
Sukiran, M.A., Kartini, N.O.R., Bakar,
A.B.U. & Chow, M.E.E.C. 2009. Optimization of pyrolysis of oil palm empty
fruit bunches optimization of pyrolysis of oil palm empty fruit bunches. American
Journal of Applied Sciences 21(6): 653-658.
Syahrinudin. 2005. The potential of oil
palm and forest plantations for carbon sequestration on degraded land in
Indonesia. Ecology and Development Series. Goettingen: Cuvillier Verlag.
Teo, K.L. 1991. A
unified computational approach to optimal control problems. Proceedings of the First World Congress on World Congress of
Nonlinear Analysts, Volume III. New York: Longman Scientific &
Technical.
Wicke, B., Sikkema, R.,
Dornburg, V. & Faaij, A. 2011. Exploring land use changes and the role of palm oil
production in Indonesia and Malaysia. Land Use Policy 28(1):
193-206.
Xabadia, A. & Goetz, R.U. 2010. The optimal selective logging regime and the faustmann formula. Journal of Forest Economics 16(1): 63-82.
*Pengarang untuk
surat-menyurat; email: noryanti4@live.utm.my