Sains Malaysiana 48(4)(2019): 909–920

http://dx.doi.org/10.17576/jsm-2019-4804-24

 

Model Sistem Dinamik untuk Meramalkan Bilangan Pesakit dan Keperluan Sumber Tenaga di Zon Kuning Jabatan Kecemasan

(A System Dynamics Model to Predict the Number of Patients and Resources Required in Emergency Department's Yellow Zone)

 

NAZHATUL SAHIMA MOHD YUSOFF1, CHOONG-YEUN LIONG2*, ABU YAZID MD NOH3, WAN ROSMANIRA ISMAIL2 & NORAZURA AHMAD4

 

1Faculty of Computer Sciences & Mathematics, Universiti Teknologi MARA (UiTM), Cawangan Kelantan, 18500 Machang, Kelantan Darul Naim, Malaysia

 

2Statistics Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Emergency Department, Hospital Universiti Sains Malaysia (HUSM), Jalan Raja Perempuan Zainab 2, 16150 Kota Bharu, Kelantan Darul Naim, Malaysia

 

4School of Quantitative Sciences, CAS Universiti Utara Malaysia, 06010 Sintok, Kedah Darul Aman, Malaysia

 

Diserahkan: 15 Mei 2018/Diterima: 8 Februari 2019

 

ABSTRAK

Jabatan Kecemasan Hospital Universiti Sains Malaysia (JKHUSM) telah menunjukkan perubahan yang pesat dan menghadapi transformasi drastik berhubung dengan kepentingan dalam sistem penjagaan kesihatan. Peramalan dan perancangan sumber yang munasabah perlu dilakukan bagi memenuhi permintaan pesakit yang kian bertambah. Justeru, kajian ini memfokuskan kepada Zon Kuning di JKHUSM yang memerlukan perancangan sewajarnya atas keperluan sumber yang sepatutnya disediakan pada masa kini dan akan datang untuk membantu pihak pengurusan dalam perancangan strategik jabatan serta menambah baik aliran pesakit dan perkhidmatan di zon tersebut. Pemodelan Sistem Dinamik telah dibangunkan untuk meramalkan bilangan pesakit yang akan berkunjung serta jumlah sumber yang diperlukan untuk memenuhi permintaan perkhidmatan di Zon Kuning JKHUSM pada masa sekarang (2014) dan masa hadapan bagi tempoh lima (2019) dan sepuluh tahun akan datang (2024). Hasil kajian meramalkan sumber yang diperlukan bagi memenuhi permintaan pesakit yang berkunjung di Zon Kuning pada masa sekarang adalah seramai 11 orang doktor, 12 orang jururawat dan 18 buah katil berbanding dengan sembilan orang doktor, sembilan orang jururawat dan 16 buah katil sedia ada. Seterusnya penambahan dua buah katil diramalkan untuk memenuhi keperluan pesakit bagi tempoh lima dan sepuluh tahun akan datang. Manakala tiada penambahan doktor dan jururawat diperlukan bagi memenuhi permintaan pesakit bagi tempoh lima tahun akan datang. Namun begitu dijangkakan penambahan seorang doktor dan seorang jururawat diperlukan bagi memenuhi permintaan 10 tahun akan datang. Oleh itu, peramalan penambahan sumber ini adalah sangat penting untuk menambah baik aliran pesakit di Zon Kuning JKHUSM serta membantu dalam mencapai Penunjuk Prestasi Utama jabatan ini. Hasil kajian yang diperoleh akan membantu pihak pengurusan membuat keputusan yang wajar dengan belanjawan yang telah ditetapkan demi meningkatkan kualiti perkhidmatan yang ditawarkan di samping meningkatkan tahap prestasi Zon Kuning JKHUSM.

 

Kata kunci: Jabatan kecemasan; penunjuk prestasi utama; peramalan; sistem dinamik; sumber tenaga; zon kuning

 

ABSTRACT

Emergency Department of Hospital Universiti Sains Malaysia (EDHUSM) has shown rapid changes and is facing a drastic transformation in relation to the importance of the healthcare system. Reasonable resource forecasting and planning should be done to meet the growing demands of patients. Hence, this study is focusing on the Yellow Zone in JKHUSM which requires proper planning on the needs of the resources that should be available now and in the future to assist the management in the department’s strategic planning as well as to improve the patients flow and services in the zone. Systems Dynamics modeling is used to forecast the number of patients that will visit, and predict the resources required to match the demand and supply in the Yellow Zone at present (2014) and in the future for the next five (2019) and ten years (2024). The results showed that 11 doctors, 12 nurses and 18 beds are needed compared to nine doctors, nine nurses and 16 beds to cater for patients visiting the Yellow Zone at present. Furthermore, an addition of two beds is predicted to meet the patient's needs over the next five and ten years. Meanwhile, no additional doctors and nurses are required to meet the patient's demand for the next five years. However, the addition of a doctor and a nurse is needed to meet the next 10 years' demand. Therefore, forecasting of these resources is crucial to improve the patients flow in the Yellow Zone of EDHUSM and to assist in achieving the Key Performance Indicator of the department. The results of the study will help the management to make the right decision within their stipulated budget to improve the quality of services rendered and further enhance the performance of EDHUSM's Yellow Zone.

 

Keywords: Emergency department; forecasting; key performance indicator; resources; system dynamics; yellow zone

RUJUKAN

Alasad, R., Motawa, I. & Ogunlana, S. 2012. A system dynamic-based method for demand forecasting in infrastructure projects-A case of PPP projects. Proceeding of 28th Annual ARCOM Conference. hlm. 327-336.

Al-Refaie, A., Fouad, R.H., Li, M. & Shurrab, M. 2014. Applying simulation and DEA to improve performance of emergency department in a Jordanian hospital. Simulation Modelling Practice and Theory 41: 59-72.

Aminuddin, W.M.W.M., Ismail, W.R. & Husyairi, H. 2016. Estimating emergency department maximum capacity using simulation and data envelopment analysis. Indian Journal of Sciences & Technology 9(28): 1-10.

Azaiez, M.N. & Al-Sharif, S. 2005. A 0-1 goal programming model for nurse scheduling. Computers & Operations Research 32: 491-507.

Blasak, E.R., Starks, W.D., Armel, S.W. & Hayduk, C. 2003. The use of simulation to evaluate hospital operations between the emergency department and a medical telemetry unit. Proceeding of 2003 Winter Simulation Conference. hlm. 1887-1893.

Brailsford, S.C., Desai, S.M. & Viana, J. 2010. Towards the holygrail: Combining system dynamics and discrete-event simulation in healthcare. Proceeding of 2010 Winter Simulation Conference. hlm. 2293-2303.

Brennan, J.J., Chan, T.C., Hsia, R.Y., Vike, G.M., Killeen, J.P. & Castillo, E.M. 2014. Predicting frequent use of emergency department resources. An International Journal of Annals of Emergency Medicine 64: S118-S119.

Chahal, K. & Eldabi, T. 2008. Applicability of hybrid simulation to different models of governance in UK healthcare. Proceeding of 2008 Winter Simulation Conference. hlm. 1469-1477.

Gunal, M.M. & Pidd, M. 2010. Discrete event simulation for performance modelling in healthcare: A review of the literature. Journal of Simulation 4(1): 42-51.

Hasimah, S., Jafri, Z., Norazura, A., Norhaslinda, Z.A. & Nurul, N.H. 2017. Introduction to System Dynamics Modelling and Vensim Software. Serdang: UPM Press.

Hassan, F.A. & Minato, N. 2017. A system dynamics analysis of Malaysian healthcare resources. International Journal of Japan Association for Management Systems 9(1): 61-69.

Hong, N.C. & Ghani, N.A. 2006. A model for predicting average ambulance service travel times in Penang Island. Proceeding of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications. University Sains Malaysia.

Hospital Universiti Sains Malaysia. 2016. Sejarah Hospital USM. http://h.usm.my/v3/index.php/perkhidmatan. Diakses pada 25 Oktober 2017.

Ibrahim, I.M., Liong, C.Y., Bakar, S.A. & Ahmad, N. 2018a. Estimating optimal resource capacities in emergency department. Indian Journal of Public Health Research & Development 9(11): 1559-1565.

Ibrahim, I.M., Liong, C.Y., Bakar, S.A. & Ahmad, N. 2018b. Performance improvement of the yellow zone in emergency department using discrete event simulation approach. International Journal of Engineering & Technology 7(4): 102-105.

Ibrahim, I.M., Liong, C.Y., Bakar, S.A., Ahmad, N. & Najmuddin, A.F. 2017. Minimizing patient waiting time in emergency department of public hospital using simulation optimization approach. The 4th International Conference on Mathematical Sciences, AIP Conference Proceedings. 1830: 1-8.

Jeenanunta, C., Ayudhya, S.I.N., Doungraksa, P., Sereewattanapong, C., Pongtanupattana, A. & Nuchjarin, I. 2013. Resource analysis in emergency department using simulation-based framework. The 4th International Conference on Engineering Project and Production Management. hlm. 1073-1083.

Kelton, W.D., Sadowski, R.P. & Zupick, N.B. 2015. Simulation with ARENA. 6th ed. Singapore: McGraw-Hill Education.

Komashie, A. & Mousavi, A. 2005. Modeling emergency departments using discrete event simulation techniques. Proceedings of 2005 Winter Simulation Conference. hlm. 2681-2685.

McHugh, M., Van Dyke, K., McClelland, M. & Moss, D. 2011. Improving Patient Flow and Reducing Emergency Department Crowding: A Guide for Hospitals. AHRQ Publication.

Mohd, R.Z., Muthukkaruppan, I., Kassim. & Rashidi, A. 2016. Estimating the right allocation of doctors in emergency department. Proceedings of 2016 Management International Conference (KMICe). hlm. 446-452.

Norazura, A., Noraida, A.G., Anton, A.K. & Razman, M.T. 2014. Managing resource capacity using hybrid simulation. International Conference on Quantitative Sciences and Its Applications. hlm. 504-511.

Norazura, A., Noraida, A.G., Anton, A.K. & Razman, M.T. 2013. Simulating the impact of an increase in patient volume on a government emergency department in Malaysia. International Proceedings of Economics Development and Research (IPEDR). hlm. 78-82.

Norazura, A., Noraida, A.G., Anton, A.K. & Razman, M.T. 2012a. Emergency department problems: A call for hybrid simulation. Proceedings of the World Congress on Engineering Vol III.

Norazura, A., Noraida, A.G., Anton, A.K. & Razman, M.T. 2012b. Evaluating emergency department resource capacity using simulation. Modern Applied Science 6(11): 9-19.

Paul, S.A., Reddy, M.C. & DeFlitch, C.J. 2010. A systematic review of simulation studies investigating emergency department overcrowding. Simulation 86(8-9): 559-571.

Rashwan, W., Abo-Hamad, W. & Arisha, A. 2015. A system dynamics view of acute bed blockage problem in Irish healthcare system. European Journal of Operational Research 247(1): 276-293.

Rafael, C., Flavio, S.F., Filipe, R.L., Jeruza, N., Ricardo, S.K. & Beatriz, D.S. 2016. Forecasting daily volume and acuity of patients in the emergency department. Computational and Mathematical Methods in Medicine 2016: 3863268.

Saghafian, S., Hopp, W.J., Van Oyen, M.P., Desmond, J.S. & Kronick, S.L. 2012. Patient streaming as a mechanism for improving responsiveness in emergency departments. Operation Research 60(5): 1080-1097.

Sterman, J. 2000. Business Dynamics: System Thinking and Modelling for a Complex World. Boston: McGraw-Hill.

Tehseen, A. & Amos, H.C.N. 2015. Strategy evaluation using system dynamics and multi-objective optimization for an internal supply chain. Proceedings of the 2015 Winter Simulation Conference. hlm. 2033-2044.

Uriarte, A.G., Zuniga, E.R., Moris, M.U. & Ng, A.H.C. 2015. System design and improvement of an emergency department using simulation-based multi-objective optimization. Journal of Physics 1: 1-11.

Weng, S.J., Tsai, L.M., Wang, C.Y., Chang, C.Y. & Gotcher, D. 2011. Using simulation and data envelopment analysis in optimal healthcare efficiency allocations. Proceeding of 2011 Winter Simulation Conference, Indian Journal of Science and Technology. hlm. 1295-1305.

Wu, J., Shaun, J.G., Huiping, X. & John, T.F. 2016. A practical method for predicting frequent use of emergency department care using routinely available electronic registration data. BMC Emergency Medicine 16(12): 1-9.

Yusoff, N.S.M., Liong, C.Y., Ismail, W.R., Noh, A.Y.M. & Noor, N.A.M. 2017. Estimating the right allocation of resources on weekends and public holidays in Green Zone using hybrid methods. The 2017 UKM FST Postgraduate Colloqium: Proceedings of the University Kebangsaan Malaysia, Faculty of Science and Technology 2017 Postgraduate Colloqium. American Institute of Physics Inc. 1940: 020123.

Yusoff, N.S.M., Liong, C.Y., Ismail, W.R., Noh, A.Y.M. & Ahmad, N. 2018a. A system dynamics model for predicting present and future demands in emergency department’s Green Zone. Indian Journal of Public Health Research & Development 9(11): 1566-1572.

Yusoff, N.S.M., Liong, C.Y., Noh, A.Y.M. & Ismail, W.R. 2018b. Discrete event simulation and data envelopment analysis models for selecting the best resource allocation alternative at an emergency department’s Green Zone. Sains Malaysiana 47(11): 2917-2925.

 

*Pengarang untuk surat-menyurat; email: lg@ukm.edu.my

 

sebelumnya