Sains Malaysiana 48(5)(2019): 1019–1024

http://dx.doi.org/10.17576/jsm-2019-4805-10

 

The Potential Effect of Fatty Acids from Pliek U on Epidermal Fatty Acid Binding Protein: Chromatography and Bioinformatic Studies

(Potensi Kesan Asid Lemak daripada Pliek U pada Epidermis Asid Lemak Pengikat Protein: Kajian Kromatografi dan Bioinformatik)

 

NANDA EARLIA1, RAHMAD RAHMAD2, MOHAMAD AMIN3, CRS PRAKOESWA4, KHAIRAN KHAIRAN5 & RINALDI IDROES2,5*

 

1Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia

 

2Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia

 

3Department of Biology, Faculty Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, 65145, Indonesia

 

4Faculty of Medicine, Universitas Airlangga - Dr Soetomo General Academic Hospital, Surabaya, 60132, Indonesia

 

5Department of Pharmacy, Faculty Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia

 

Diserahkan: 15 Januari 2019/Diterima: 28 Mac 2019

 

ABSTRACT

The fatty acid analysis in Pliek U and its bioinformatic studies had been carried out and reported. Herein, fatty acids were analyzed by gas chromatography-mass spectrometry (GC-MS), meanwhile their potential effect, based on its interaction on epidermal fatty acid binding protein (E-FABP), was studied by bioinformatics approach with reverse docking technique using palmitic acid as a control compound. For the stated purpose, two Pliek U extracts were prepared, namely ethanolic Pliek U extract (EPUE), and ethanolic of residue hexane of Pliek U extract (ERHPUE). The GC-MS results showed that lauric, myristic, palmitic, and oleic acids were predominant, followed by stearic, capric, linoleic, and caprylic acids. Reverse docking results showed that linoleic acid had the lowest binding affinity (-5.9 kcal/mol) and was strongly bound to E-FABP on the same side of amino acid GLN A98, ARG A81, TYR A22, and LYS A61. These findings indicated that linoleic acid has a potential utility as a drug candidate for atopic dermatitis treatment.

 

Keywords: Atopic dermatitis; bioinformatics; E-FABP; fatty acid; gas chromatography; Pliek U

 

ABSTRAK

Analisis asid lemak pada Pliek U dan kajian bioinformatiknya telah dijalankan dan dilaporkan. Di sini, asid lemak telah dianalisis menggunakan spektrometri gas kromatografi - jisim (GC-MS), sementara kesan potensinya berdasarkan interaksi pada epidermis asid lemak pengikat protein (E-FABP), dikaji menggunakan kaedah bioinformatik dengan teknik dok berbalik menggunakan asid palmitik sebagai sebatian kawalan. Untuk maksud yang dinyatakan, dua ekstrak Pliek U telah disediakan; ekstrak etanolik Pliek U (EPUE) dan ekstrak etanolik sisa heksana Pliek U (ERHPUE). Keputusan GC-MS menunjukkan asid laurik, miristik, palmitik dan oleik adalah pradominan, diikuti oleh asid stearik, caprik, linoleik dan caprilik. Keputusan dok berbalik menunjukkan asid linoleik mempunyai pengikat afiniti terendah (-5.9 kcal/mol) dan terikat dengan kuat kepada E-FABP pada sisi yang sama dengan asid amino GLN A98, ARG A81, TYR A22 dan LYS A61. Penemuan ini menunjukkan asid linoleik mempunyai potensi utiliti sebagai calon dadah untuk rawatan dermatitis atopik.

 

Kata kunci: Asid lemak; dermatitis atopik; bioinformatik; E-FABP; kromatografi gas; Pliek U

RUJUKAN

Arpi, Normalina. 2013. Pembuatan minyak kemenyan (minyak obat tradisional khas aceh) dengan variasi jenis bahan baku minyak dan konsentrasi bahan pewangi. Jurnal Teknologi dan Industri Pertanian Indonesia 5(1). https://doi.org/10.17969/ jtipi.v5i1.998.

Azeez, Shamina. 2007. Fatty acid profile of coconut oil in relation to nut maturity and season in selected cultivars/ hybrids. British Food Journal 109(4): 272-279. https://doi. org/10.1108/00070700710736525.

Balleza, C.F. & Sierra, Z.N. 1976. Proximate analysis of the coconut endosperm in progressive stages of development. Philippines Journal of Crop Science 1: 37-44.

Carandang, E.V. 2008. Health benefits of virgin coconut oil. Indian Coconut Journal-Cochin-38(9): 8.

Cournia, Z., Bryce, A. & Woody S. 2017. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. Journal of Chemical Information and Modeling 57(12): 2911-2937. https://doi.org/10.1021/ acs.jcim.7b00564.

Du, X., Li, Y., Xia, Y-L., Ai, S-M., Liang, J., Sang, P., Ji, X-L. & Liu, S-Q. 2016. Insights into protein-ligand interactions: mechanisms, models, and methods. International Journal of Molecular Sciences 17(2): E144. https://doi.org/10.3390/ ijms17020144.

Elias, P.M. 2014. Lipid abnormalities and lipid-based repair strategies in atopic dermatitis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1841(3): 323- 330. https://doi.org/10.1016/j.bbalip.2013.10.001.

Hurle, M.R., Yang, L., Xie, Q., Rajpal, D.K., Sanseau, P. & Agarwal, P. 2013. Computational drug repositioning: From data to therapeutics. Clinical Pharmacology & Therapeutics 93(4): 335-341. https://doi.org/10.1038/clpt.2013.1.

Jumat Salimon, Talal Ahmed & Nadia Salih. 2014. Quantitative gas chromatographic method for the analysis of cis and trans fatty acid in margarines. Sains Malaysiana 43(12): 1937- 1942. https://doi.org/10.17576/jsm-2014-4312-16.

Jumat Salimon, Dina Azleema Mohd Noor, A.T. Nazrizawati, M.Y. Mohd Firdaus & A. Noraishah. 2010. Fatty acid composition and physicochemical properties of Malaysian castor bean Ricinus communis L. seed oil’. Sains Malaysiana 39(5): 761-764.

Jungersted, J.M., Hellgren, L.I., Jemec, G.B. & Agner, T. 2008. Lipids and skin barrier function - A clinical perspective. Contact Dermatitis 58(5): 255-262. https://doi.org/10.1111/ j.1600-0536.2008.01320.x.

Laureles, L.R., Rodriguez, F.M., Reaño, C.E., Santos, G.A., Laurena, A.C. & Tecson Mendoza, E.M. 2002. Variability in fatty acid and triacylglycerol composition of the oil of coconut (Cocos nucifera L.) hybrids and their parentals. Journal of Agricultural and Food Chemistry 50(6): 1581-1586. https:// doi.org/10.1021/jf010832w.

Lin, T.Z., Zhong, L. & Santiago, J. 2018. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. International Journal of Molecular Sciences 19(1): 70. https://doi.org/10.3390/ijms19010070.

Lukitaningsih, Endang, Aditya Wisnusaputra, and B. S. Ari Sudarmanto. 2015. Scrining in silico active compound of Pachyrrhizus erosus as antitirosinase on Aspergillus oryzae (computattional study with homology modeling and molecular docking). Majalah Obat Tradisional 20(1): 7-15. https://doi.org/10.22146/tradmedj.7751.

McCusker, M.M. & Grant-Kels, J.M. 2010. Healing fats of the skin: The structural and immunologic roles of the ω-6 and ω-3 fatty acids. Clinics in Dermatology 28(4): 440-451. https:// doi.org/10.1016/j.clindermatol.2010.03.020.

Ogawa, E., Owada, Y., Ikawa, S., Adachi, Y., Egawa, T., Nemoto, K., Suzuki, K., Hishinuma, T., Kawashima, H., Kondo, H., Muto, M., Aiba, S. & Okuyama, R. 2011. Epidermal fabp (fabp5) regulates keratinocyte differentiation by 13(s)-hode-mediated activation of the nf-κb signaling pathway. Journal of Investigative Dermatology 131(3): 604-612. https://doi. org/10.1038/jid.2010.342.

Orsavova, J., Misurcova, L., Ambrozova, J., Vicha, R. & Mlcek, J. 2015. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences 16(12): 12871-12890. https://doi.org/10.3390/ijms160612871.

Owada, Y., Suzuki, I., Suzuki, R., Kondo, H., Takano, H., Yamanaka, H., Kobayashi, H., Sugitani, Y., Tomioka Y., Terui, T., Mizugaki, M., Tagami, H. & Noda, T. 2002. Altered water barrier function in epidermal-type fatty acid binding protein-deficient mice. Journal of Investigative Dermatology 118(3): 430-435. https://doi.org/10.1046/j.0022-202x.2001.01616.x.

Sandilands, A., Sutherland, C., Irvine, A.D. & McLean, W.H.I. 2009. Filaggrin in the Frontline: Role in skin barrier function and disease. Journal of Cell Science 122(9): 1285-1294. https://doi.org/10.1242/jcs.033969.

van Smeden, J., Janssens, M., Kaye, E.C.J., Caspers, P.J., Lavrijsen, A.P., Vreeken, R.J. & Bouwstra, J.A. 2014. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Experimental Dermatology 23(1): 45-52. https://doi.org/10.1111/exd.12293.

Suhartono, E., I. Thalib, I. Aflanie, Z. Noor, & R. Idroes. 2018. Study of interaction between cadmium and bovine serum albumin with uv-vis spectrocopy approach. IOP Conference Series: Materials Science and Engineering 350 (May): 012008. https://doi.org/10.1088/1757-899X/350/1/012008.

Thyssen, J.P. & Kezic, S. 2014. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. Journal of Allergy and Clinical Immunology 134(4): 792-799. https://doi.org/10.1016/j.jaci.2014.06.014.

 

*Pengarang untuk surat-menyurat; email: rinaldi.idroes@unsyiah.ac.id

 

 

sebelumnya