Sains Malaysiana 48(5)(2019):
1019–1024
http://dx.doi.org/10.17576/jsm-2019-4805-10
The Potential Effect of Fatty Acids
from Pliek U on Epidermal
Fatty Acid Binding Protein: Chromatography and Bioinformatic
Studies
(Potensi Kesan Asid Lemak
daripada Pliek
U pada Epidermis Asid Lemak Pengikat Protein: Kajian Kromatografi dan Bioinformatik)
NANDA EARLIA1,
RAHMAD
RAHMAD2,
MOHAMAD
AMIN3,
CRS
PRAKOESWA4,
KHAIRAN
KHAIRAN5
& RINALDI IDROES2,5*
1Graduate School of
Mathematics and Applied Sciences, Universitas
Syiah Kuala, Banda Aceh, 23111, Indonesia
2Department of Chemistry,
Faculty Mathematics and Natural Sciences, Universitas
Syiah Kuala, Banda Aceh, 23111, Indonesia
3Department of Biology,
Faculty Mathematics and Natural Sciences, Universitas
Negeri Malang, Malang, 65145, Indonesia
4Faculty of Medicine,
Universitas Airlangga
- Dr Soetomo
General Academic Hospital, Surabaya, 60132, Indonesia
5Department of Pharmacy,
Faculty Mathematics and Natural Sciences, Universitas
Syiah Kuala, Banda Aceh, 23111, Indonesia
Diserahkan: 15 Januari 2019/Diterima: 28 Mac 2019
ABSTRACT
The fatty acid analysis in Pliek U and its bioinformatic studies had
been carried out and reported. Herein, fatty acids were analyzed
by gas chromatography-mass spectrometry (GC-MS), meanwhile their potential
effect, based on its interaction on epidermal fatty acid binding
protein (E-FABP), was studied by bioinformatics approach with reverse
docking technique using palmitic acid as a control compound. For
the stated purpose, two Pliek U
extracts were prepared, namely ethanolic
Pliek U extract (EPUE), and ethanolic of residue
hexane of Pliek U extract (ERHPUE).
The GC-MS results showed that lauric,
myristic, palmitic, and oleic acids
were predominant, followed by stearic, capric,
linoleic, and caprylic acids. Reverse docking results showed that linoleic
acid had the lowest binding affinity (-5.9 kcal/mol)
and was strongly bound to E-FABP on the same side of amino acid
GLN
A98, ARG
A81, TYR A22, and LYS A61.
These findings indicated that linoleic acid has a potential utility
as a drug candidate for atopic dermatitis treatment.
Keywords: Atopic dermatitis;
bioinformatics; E-FABP; fatty acid; gas chromatography;
Pliek U
ABSTRAK
Analisis asid lemak pada
Pliek U dan kajian
bioinformatiknya telah
dijalankan dan dilaporkan. Di sini, asid lemak telah
dianalisis menggunakan
spektrometri gas kromatografi -
jisim (GC-MS), sementara
kesan potensinya
berdasarkan interaksi pada epidermis asid lemak pengikat protein (E-FABP),
dikaji menggunakan
kaedah bioinformatik dengan teknik dok
berbalik menggunakan
asid palmitik sebagai
sebatian kawalan.
Untuk maksud yang dinyatakan, dua ekstrak Pliek U telah disediakan; ekstrak etanolik Pliek U (EPUE) dan
ekstrak etanolik
sisa heksana Pliek U (ERHPUE). Keputusan
GC-MS
menunjukkan asid
laurik, miristik,
palmitik dan oleik
adalah pradominan,
diikuti oleh asid
stearik, caprik,
linoleik dan caprilik.
Keputusan dok
berbalik menunjukkan asid linoleik mempunyai
pengikat afiniti
terendah (-5.9 kcal/mol) dan terikat dengan
kuat kepada
E-FABP pada sisi yang sama dengan asid
amino GLN A98, ARG A81, TYR A22
dan LYS A61. Penemuan ini
menunjukkan asid linoleik mempunyai
potensi utiliti
sebagai calon dadah
untuk rawatan
dermatitis atopik.
Kata kunci: Asid
lemak; dermatitis atopik;
bioinformatik; E-FABP; kromatografi gas; Pliek U
RUJUKAN
Arpi, Normalina. 2013.
Pembuatan minyak
kemenyan (minyak obat tradisional khas aceh) dengan
variasi jenis
bahan baku minyak
dan konsentrasi
bahan pewangi. Jurnal Teknologi dan Industri Pertanian
Indonesia 5(1). https://doi.org/10.17969/ jtipi.v5i1.998.
Azeez, Shamina. 2007.
Fatty acid profile of coconut oil in relation to nut maturity
and season in selected cultivars/ hybrids. British Food Journal
109(4): 272-279. https://doi. org/10.1108/00070700710736525.
Balleza, C.F. & Sierra, Z.N. 1976. Proximate
analysis of the coconut endosperm in progressive stages of development.
Philippines Journal of Crop Science 1: 37-44.
Carandang, E.V. 2008. Health benefits
of virgin coconut oil. Indian Coconut Journal-Cochin-38(9):
8.
Cournia, Z., Bryce, A. & Woody S. 2017. Relative
binding free energy calculations in drug discovery: Recent advances
and practical considerations. Journal of Chemical Information
and Modeling 57(12): 2911-2937. https://doi.org/10.1021/ acs.jcim.7b00564.
Du, X., Li, Y., Xia, Y-L., Ai, S-M., Liang,
J., Sang, P., Ji, X-L. & Liu, S-Q. 2016. Insights into protein-ligand
interactions: mechanisms, models, and methods. International
Journal of Molecular Sciences 17(2): E144. https://doi.org/10.3390/
ijms17020144.
Elias, P.M. 2014. Lipid abnormalities and
lipid-based repair strategies in atopic dermatitis. Biochimica
et Biophysica Acta
(BBA) - Molecular and Cell Biology of Lipids 1841(3): 323-
330. https://doi.org/10.1016/j.bbalip.2013.10.001.
Hurle, M.R., Yang, L., Xie,
Q., Rajpal, D.K., Sanseau,
P. & Agarwal, P. 2013. Computational drug repositioning: From
data to therapeutics. Clinical Pharmacology & Therapeutics
93(4): 335-341. https://doi.org/10.1038/clpt.2013.1.
Jumat Salimon, Talal Ahmed & Nadia Salih. 2014.
Quantitative gas chromatographic method for the analysis of cis
and trans fatty acid in margarines. Sains
Malaysiana 43(12): 1937- 1942. https://doi.org/10.17576/jsm-2014-4312-16.
Jumat Salimon, Dina
Azleema Mohd Noor, A.T. Nazrizawati, M.Y. Mohd Firdaus & A. Noraishah. 2010.
Fatty acid composition and physicochemical properties of Malaysian
castor bean Ricinus communis L.
seed oil’. Sains Malaysiana
39(5): 761-764.
Jungersted, J.M., Hellgren,
L.I., Jemec, G.B. & Agner,
T. 2008. Lipids and skin barrier function - A clinical perspective.
Contact Dermatitis 58(5): 255-262. https://doi.org/10.1111/
j.1600-0536.2008.01320.x.
Laureles, L.R., Rodriguez, F.M., Reaño, C.E., Santos, G.A., Laurena,
A.C. & Tecson Mendoza, E.M. 2002.
Variability in fatty acid and triacylglycerol composition of the
oil of coconut (Cocos nucifera L.) hybrids and their parentals.
Journal of Agricultural and Food Chemistry 50(6): 1581-1586.
https:// doi.org/10.1021/jf010832w.
Lin, T.Z.,
Zhong, L. & Santiago, J. 2018. Anti-inflammatory
and skin barrier repair effects of topical application of some
plant oils. International
Journal of Molecular Sciences 19(1): 70. https://doi.org/10.3390/ijms19010070.
Lukitaningsih, Endang, Aditya
Wisnusaputra, and B. S. Ari Sudarmanto.
2015. Scrining in silico
active compound of Pachyrrhizus
erosus as antitirosinase on
Aspergillus oryzae (computattional
study with homology modeling and molecular docking). Majalah
Obat Tradisional
20(1): 7-15. https://doi.org/10.22146/tradmedj.7751.
McCusker, M.M. & Grant-Kels,
J.M. 2010. Healing fats of the skin: The structural and immunologic
roles of the ω-6 and ω-3 fatty acids. Clinics in
Dermatology 28(4): 440-451. https:// doi.org/10.1016/j.clindermatol.2010.03.020.
Ogawa, E., Owada,
Y., Ikawa, S., Adachi, Y., Egawa,
T., Nemoto, K., Suzuki, K., Hishinuma,
T., Kawashima, H., Kondo, H., Muto, M., Aiba,
S. & Okuyama, R. 2011. Epidermal
fabp (fabp5) regulates keratinocyte
differentiation by 13(s)-hode-mediated
activation of the nf-κb
signaling pathway. Journal of Investigative Dermatology 131(3):
604-612. https://doi. org/10.1038/jid.2010.342.
Orsavova, J., Misurcova,
L., Ambrozova, J., Vicha,
R. & Mlcek, J. 2015. Fatty acids
composition of vegetable oils and its contribution to dietary
energy intake and dependence of cardiovascular mortality on dietary
intake of fatty acids. International Journal of Molecular Sciences 16(12): 12871-12890. https://doi.org/10.3390/ijms160612871.
Owada, Y., Suzuki, I., Suzuki, R., Kondo, H.,
Takano, H., Yamanaka, H., Kobayashi, H., Sugitani,
Y., Tomioka Y., Terui, T., Mizugaki,
M., Tagami, H. & Noda, T. 2002.
Altered water barrier function in epidermal-type fatty acid binding
protein-deficient mice. Journal of Investigative Dermatology
118(3): 430-435. https://doi.org/10.1046/j.0022-202x.2001.01616.x.
Sandilands, A., Sutherland, C., Irvine, A.D.
& McLean, W.H.I. 2009. Filaggrin
in the Frontline: Role in skin barrier function and disease. Journal
of Cell Science 122(9): 1285-1294. https://doi.org/10.1242/jcs.033969.
van Smeden, J.,
Janssens, M., Kaye, E.C.J., Caspers,
P.J., Lavrijsen, A.P., Vreeken,
R.J. & Bouwstra, J.A. 2014. The
importance of free fatty acid chain length for the skin barrier
function in atopic eczema patients. Experimental Dermatology
23(1): 45-52. https://doi.org/10.1111/exd.12293.
Suhartono, E., I. Thalib,
I. Aflanie, Z. Noor, & R. Idroes.
2018. Study of interaction between cadmium and bovine serum albumin
with uv-vis spectrocopy approach. IOP
Conference Series: Materials Science and Engineering 350 (May):
012008. https://doi.org/10.1088/1757-899X/350/1/012008.
Thyssen, J.P. & Kezic,
S. 2014. Causes of epidermal filaggrin
reduction and their role in the pathogenesis of atopic dermatitis.
Journal of Allergy and Clinical Immunology 134(4): 792-799.
https://doi.org/10.1016/j.jaci.2014.06.014.
*Pengarang untuk
surat-menyurat; email: rinaldi.idroes@unsyiah.ac.id