Sains Malaysiana 48(5)(2019): 
                1025–1033 
              http://dx.doi.org/10.17576/jsm-2019-4805-11 
                
               
              Immobilization of Choline Chloride: 
                Urea onto Mesoporous Silica for Carbon Dioxide Capture 
              (Pemegunan Kolina Klorida: Urea ke atas Silika 
                Mesoliang 
                untuk Penangkapan Karbon Dioksida) 
               
              ZAITUN GHAZALI1,2, 
                NUR 
                HASYAREEDA 
                HASSAN1,2, 
                MOHD 
                AMBAR 
                YARMO1,3, 
                TEH 
                LEE 
                PENG1,3 
                & RIZAFIZAH OTHAMAN1,2*
               
              1School of Chemical Sciences and Food Technology, Faculty of Science 
                and Technology, Universiti Kebangsaan 
                Malaysia, 43600 UKM Bangi, Selangor Darul 
                Ehsan, Malaysia
               
              2Polymer Research 
                Center, Faculty of Science and Technology, Universiti 
                Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
               
              3Catalyst Research 
                Group, Faculty of Science and Technology, Universiti 
                Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
               
              Diserahkan: 7 Februari 2019/Diterima: 28 Mac 2019
               
              ABSTRACT 
              A green composite adsorbent based 
                on mesoporous silica-gel (SG) and deep eutectic solvent 
                (DES) 
                mixture of choline chloride-urea (ChCl:U) 
                was synthesized as an alternative for carbon dioxide (CO2) adsorption. 
                The composite adsorbent was prepared by wet impregnation technique 
                with various ChCl:U 
                (mole ratio 1:2) content in SG at 5-15% (w/w). Fourier transform 
                infrared attenuated total reflectance (ATR-FTIR) results showed successful 
                impregnation of ChCl:U 
                into SG with the presence of C=O carbonyl amide group stretching, 
                N-H scissoring bending, CH2 bending and C-N stretching peaks. 
                Thermal degradation of the adsorbent started with urea at 130°C 
                followed by ChCl at 300°C. Meanwhile, 
                nitrogen physisorption demonstrated a decrease in specific surface 
                areas of the sorbents with increasing ChCl:U 
                weight percentage due to the blockage of micropores 
                by ChCl:U. The optimum CO2 adsorption 
                capacity of 22.3 mg/g was achieved by 10% ChCl:U/SG200, 
                which was higher than the immobilised 
                SG200, hence making it relevant to become a green and economical 
                adsorbent for CO2 capture. 
                
               
              Keywords: Adsorption; carbon 
                capture; choline chloride; deep eutectic solvent; silica gel; 
                urea 
               
              ABSTRAK 
                
              Penjerap komposit hijau berasaskan gel silika mesoliang (SG) 
                dan pelarut eutektik 
                dalam (DES) kolona 
                klorida-urea (ChCl:U) 
                disintesis untuk 
                penjerapan karbon dioksida (CO2). Penjerap 
                komposit telah 
                disediakan dengan teknik penjejalan basah dengan muatan 
                5-15% (b/b) ChCl:U 
                (nisbah mol 1:2). Spektrum inframerah transformasi Fourier-pantulan penuh kecil (ATR-FTIR) 
                membuktikan bahawa 
                ChCl:U telah berjaya 
                dijejalkan ke 
                atas SG dengan kehadiran puncak regangan kumpulan karbonil amida C=O , bengkokan N-H , bengkokan CH2 dan regangan C-N. Suhu degradasi penjerap bermula dengan urea pada 130°C diikuti oleh ChCl 
                pada 300°C. Analisis 
                penjerapan fizikal nitrogen menunjukkan penurunan luas permukaan dengan peningkatan peratus berat ChCl:U 
                disebabkan mikroliang 
                yang dilitupi oleh ChCl:U. Kapasiti 
                penjerapan CO2 yang optimum (22.3 mg/g) tercapai dengan menggunakan 10% ChCl:U/SG200 
                dengan kapasiti 
                penjerapannya lebih tinggi berbanding SG200 tanpa pemegunan,. Ini menjadikannya penjerap hijau yang ekonomi untuk penangkapan 
                CO2. 
               
              Kata kunci: Gel silika; 
                kolina klorida; 
                pelarut eutektik dalam; penangkapan karbon; penjerapan; urea
              RUJUKAN 
              Abu Tahari, M.N., Hakim, A., Wan Isahak, 
                W.N.R., Samad, W.Z. & Yarmo, 
                M.A. 2015. Adsorption of CO2 on Octadecylamine- 
                Impregnated on SiO2: Physical and chemical interaction studies. 
                Advanced Materials Research 1087: 137-141. 
              Balsamo, 
                M., Erto, A., Lancia, A., Totarella, 
                G., Montagnaro, F. & Turco, R. 2018. 
                Post-combustion CO2 capture: On the potentiality of amino 
                acid ionic liquid as modifying agent of mesoporous solids. Fuel 
                218(April 2017): 155-161. 
              Creamer, 
                A.E. & Gao, B. 2015. Carbon Dioxide Capture: An Affective 
                Way to Combat Global Warming. New York: Springer Berlin Heidelberg. 
                
              Dai, 
                Y., Van Spronsen, J., Witkamp, 
                G., Verpoorte, R. & Choi, Y.H. 2013. 
                Ionic liquids and deep eutectic solvents in natural products research: 
                Mixtures of solids as extraction solvents. Journal of Natural 
                Product 76: 2162-2173. 
              Erto, A., Silvestre-albero, A., Silvestre-albero, J., Rodríguez-reinoso, F., 
                Balsamo, M., Lancia, A. & Montagnaro, 
                F. 2015. Carbon-supported ionic liquids as innovative adsorbents 
                for CO2 
                separation from synthetic flue-gas. Journal of 
                Colloid and Interface Science 448: 41-50. 
              Gray, 
                M.L., Champagne, K.J., Fauth, D., Baltrus, 
                J.P. & Pennline, H. 2012. Performance 
                of immobilized tertiary amine solid sorbents for the capture of 
                carbon dioxide. International Journal of Greenhouse Gas Control 
                2(2008): 3-8. 
              Guo, X., Ding, L., Kanamori, K., Nakanishi, 
                K. & Yang, H. 2017. Functionalization of hierarchically porous 
                silica monoliths with polyethyleneimine 
                (PEI) for CO2 
                adsorption. Microporous and Mesoporous Materials 
                245: 51-57. 
              Hayyan, M., Abo-Hamad, A., AlSaadi, 
                M.A. & Hashim, M.A. 2015. Functionalization 
                of graphene using deep eutectic solvents. Nanoscale Research 
                Letters 10(1): 2-26. 
              Hu, J., 
                Yang, X., Yu, J. & Dai, G. 2017. Carbon dioxide (CO2) absorption 
                and interfacial mass transfer across vertically confined free 
                liquid film-a numerical investigation. Chemical Engineering 
                & Processing: Process Intensification 111: 46-56. 
              Jon, 
                N., Abdullah, I. & Othaman, R. 2013. 
                Effects of silica on the formation of epoxidised 
                natural rubber/polyvinyl chloride membrane. Sains 
                Malaysiana 42(4): 469-473. 
              Lee, 
                C.H., Hyeon, D.H., Jung, H., Chung, 
                W., Jo, D.H., Shin, D.K. & Kim, S.H. 2014. Effects of pore 
                structure and PEI impregnation on carbon dioxide adsorption by 
                ZSM-5 zeolites. Journal of Industrial and Engineering Chemistry 
                23: 251-256. 
              Leron, R.B. & Li, M.H. 2013. Solubility of carbon dioxide in a choline 
                chloride-ethylene glycol based deep eutectic solvent. Thermochimica Acta 551: 
                14-19. 
              Leron, R.B., Caparanga, A. & Li, M.H. 2013. 
                Carbon dioxide solubility in a deep eutectic solvent based on 
                choline chloride and urea at T = 303.15-343.15K and moderate pressures. 
                Journal of the Taiwan Institute of Chemical Engineers 44(6): 
                879-885. 
              Marcus, 
                Y. 2018. Gas solubilities in deep eutectic 
                solvents. Monatshefte Fur Chemie 
                149(2): 211-217. 
              Marliza, T.S., Yarmo, 
                M.A., Hakim, A., Tahari, M.N.A., Hisham, 
                M.W.M. & Taufiq-Yap, Y.H. 2017. 
                CO2 
                capture on NiO supported 
                imidazolium-based ionic liquid. American 
                Institute of Physics 20008: 1-8. 
              Marwani, H.M. & Alsafrani, 
                A.E. 2013. New solid phase extractor based on ionic liquid functionalized 
                silica gel surface for selective separation and determination 
                of lanthanum. Journal of Analytical Science and Technology 
                4(1): 13. 
              Ramdin, M., De Loos, T.W. & Vlugt, T.J.H. 2012. State-of-the-art of CO2 capture 
                with ionic liquids. Industrial and Engineering Chemistry Research 
                51: 8149-8177. 
              Rao, 
                S. & Riahi, K. 2006. The role of 
                non-CO2 greenhouse gases in climate change mitigation: Long-term 
                scenarios for the 21st century. Energy Journal 27: 177-200. 
                
              Sarmad, S., Mikkola, 
                J.P. & Ji, X. 2017. Carbon dioxide capture with ionic liquids 
                and deep eutectic solvents: A new generation of sorbents. ChemSusChem 
                10(2): 324-352. 
              Schaber, P.M., Colson, J., Higgins, S., Thielen, D., Anspach, B. & Brauer, J. 2004. Thermal decomposition (pyrolysis) of urea 
                in an open reaction vessel. Thermochimica 
                Acta 424(1-2): 131-142. 
              Shi, 
                F., Zhang, Q., Li, D. & Deng, Y. 2005. Silica-gel-confined 
                ionic liquids: A new attempt for the development of supported 
                nanoliquid catalysis. Chemistry - 
                A European Journal 11(18): 5279-5288. 
              Sing, 
                S.W.K., Everett, D.H., Haul, R.A.W., Moscou, 
                L., Pierotti, R.A., Rouquerol, J. & 
                Siemieniewska, T. 1985. Reporting physisorption data for gas/solid systems. Pure Applied 
                Chemistry 57: 603-619. 
              Vilarrasa-García, E., Cecilia, J.A., Santos, 
                S.M.L., Cavalcante, C.L., Jiménez-Jiménez, 
                J., Azevedo, D.C.S. & Rodríguez- Castellón, 
                E. 2014. CO2 adsorption on APTES functionalized mesocellular 
                foams obtained from mesoporous silicas. 
                Microporous and Mesoporous Materials 187: 125-134. 
              Wang, 
                K., Shang, H., Li, L., Yan, X., Yan, Z., Liu, C. & Zha, 
                Q. 2012. Efficient CO2 capture on low-cost silica gel modified 
                by polyethyleneimine. Journal of 
                Natural Gas Chemistry 21(3): 319-323. 
              Yu, B., 
                Cong, H., Zhao, X.S. & Chen, Z. 2011. Carbon dioxide capture 
                by Dendrimer-modified silica nanoparticles. Adsorpt. 
                Sci. Technol. 29(8): 781-788. 
              Yusuf, 
                N.Y.M., Masdar, M.S., Isahak, 
                W.N.R.W. & Nordin, D. 2018. Impregnated 
                carbon- ionic liquid as innovative adsorbent for H2/CO2 
                separation from biohydrogen. 
                International Journal of Hydrogen Energy 44(6): 3414-3424. 
                
              Zhang, 
                J., Ma, Y., Shi, F., Liu, L. & Deng, Y. 2009. Room temperature 
                ionic liquids as templates in the synthesis of mesoporous silica 
                via a sol-gel method. Microporous and Mesoporous Materials 
                119(1-3): 97-103. 
              Zhang, 
                Y., Ji, X. & Lu, X. 2015. Choline-based deep eutectic solvents 
                for mitigating carbon dioxide emissions. Novel Materials for 
                Carbon Dioxide Mitigation Technology, edited by Shi, F. & 
                Morreale, B. New York: Elsevier B.V. 
                pp. 87-116. 
              Zhu, 
                J., He, B., Huang, J., Li, C. & Ren, T. 2018. Effect of immobilization 
                methods and the pore structure on CO2 separation performance in silica-supported 
                ionic liquids. Microporous and Mesoporous Materials 260(October 
                2017): 190-200. 
              Zhu, 
                J., Xin, F., Huang, J., Dong, X. & Liu, H. 2014. Adsorption 
                and diffusivity of CO2 in phosphonium ionic liquid 
                modified silica. Chemical Engineering Journal 246: 79-87. 
                
               
              *Pengarang untuk surat-menyurat; email: rizafizah@ukm.edu.my