Sains Malaysiana 48(8)(2019):
1583–1592
http://dx.doi.org/10.17576/jsm-2019-4808-03
Effects of Quarry Blasting
Towards the Residential Area at Kangkar Pulai, Johor,
Malaysia
(Kesan Letupan Kuari kepada
Kawasan Perumahan di Kangkar Pulai, Johor, Malaysia)
KARTHIGEYAN A/L AL. RAMANATHAN*
& RINI ASNIDA ABDULLAH
School of
Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310
UTM Skudai, Johor Darul Takzim, Malaysia
Diserahkan:
8 Januari 2019/Diterima: 1 Jun 2019
ABSTRACT
The drill and blast
technique have been widely used recently due to demand for natural building
materials like rock aggregates. However, the intensity of blasting effects has
been questioned on its validity towards the nearby residential areas. In this study,
the blasting effects from Quarry A and B has been assessed based on constant
location of the residential areas (Taman Pulai Hijauan and Taman Bandar Baru
Kangkar Pulai, respectively) using the empirical formulations only. The
blasting effects are highly dependent on the maximum instantaneous charge in
blast holes (Q) which are dependent on parameters
like number of blast holes, charge per column, Powder Factor and number of
blast per delay. This study was able to show that with an increase of the
independent variables, the Q value rises significantly. The average Q value from Quarry A (181.07 kg) was slightly higher than Quarry B (180.22
kg). The correlations made for each quarry showed that Quarry A had a better
regression line with lower standard error due to the high number of blast data
obtained during the monitoring period of about 1 year and 8 months. Meanwhile,
the impact assessments showed higher PPV (Peak Particle Velocity)
value at higher Q holding blast holes in Quarry A compared to Quarry B
and decreases with increasing distance. The similar relationship was observed
for the air blast assessments. Yet, all of the blasts produced are relatively
within safe limits which are less than 5 mm/s Mineral & Geosciences
Department (JMG) and less than 125 dBL United States Bureau of Mining (USBM).
Thus, extra precaution can be taken by estimating the suitable Q value
such as A (97.66 kg) and B (271.68 to 495.01 kg) to maintain safe blasting
operations and prevent damages to the nearby residential areas.
Keywords: Air blast;
blasting effects; drill and blast; independent variables; peak particle
velocity
ABSTRAK
Teknik gerudi dan
letupan digunakan secara meluas disebabkan permintaan terhadap bahan binaan
semula jadi seperti batu agregat. Walau bagaimanapun, keamatan impak letupan
terhadap kawasan perumahan yang berdekatan kurang diteliti sebelum ini. Dalam
kajian ini, kesan letupan dari Kuari A dan B telah dinilai berdasarkan lokasi
yang tetap daripada kawasan perumahan (Taman Bandar Baru Kangkar Pulai dan
Taman Pulai Hijauan) menggunakan kaedah empirik sahaja. Kesan letupan adalah
sangat bergantung kepada cas berseketikaan maksimum (Q) yang bergantung kepada parameter seperti bilangan lubang
letupan, cas setiap lubang, faktor serbuk dan bilangan letupan setiap lengah. Kajian ini menunjukkan bahawa dengan peningkatan pemboleh ubah bebas, nilai Q meningkat. Nilai purata Q Kuari A (181.07 kg) adalah lebih tinggi daripada
Kuari B (180.22 kg). Korelasi yang dibuat menunjukkan bahawa Kuari A mempunyai
garisan regresi yang lebih baik dengan ralat piawai yang lebih rendah kerana
jumlah data letupan yang tinggi diperoleh semasa tempoh pemantauan selama 1
tahun dan 8 bulan. Manakala, penilaian impak menunjukkan nilai PPV lebih
tinggi apabila nilai Q lebih tinggi dalam Kuari A berbanding Kuari B dan
berkurangan dengan peningkatan jarak. Hubungan yang sama telah dilihat dalam
penilaian letupan udara. Walau bagaimanapun, semua letupan berada dalam had
yang selamat iaitu < 5 mm/s (JMG) dan < 125 dBL (USBM).
Oleh itu, langkah berjaga-jaga boleh diambil dengan menganggarkan nilai Q yang
sesuai seperti A (97.66 kg) dan B (271.68 - 495.01 kg) untuk memastikan operasi
letupan yang selamat dan mengelakkan kerosakan pada kawasan perumahan yang
berhampiran.
Kata kunci: Gerudi dan
letupan; impak letupan; letupan udara; pemboleh ubah bebas; PPV
RUJUKAN
Aloui,
M., Bleuzen, Y., Essefi, E. & Abbes, C. 2016. Ground vibrations and air
blast effects induced by blasting in open pit mines: Case of Metlaoui Mining
Basin, Southwestern Tunisia. Journal of Geology & Geophysics 5(3):
1-8.
Baxter,
N.L. 2001. Troubleshooting vibration problems: A compilation of case histories. Proceedings of the 55th Meeting of the
Society for Machinery Failure Prevention Technology, Virginia Beach, 2 - 5
April, Virginia. pp. 467-482.
Blasting
Training Module. 2004. Office of Surface Mining Reclamation and Enforcement.
USA: Department of the Interior’s Office of Surface Mining.
Dick,
R.A., Fletcher, L.R. & Andrea, D.V. 1987. Explosives and Blasting Procedures
Manual. Bureau of Mines Information Circular 8925: 57-74.
Department
of Environment (DOE). 2007. The Planning Guidelines for Vibration Limits and
Control in the Environment. Malaysia: Min. of Natural Resources &
Environment.
Environmental
Requirements: A Guide for Investors. 2010. Department of Environment. Malaysia:
Ministry of Natural Resources and Environment.
Evans,
M.K. 2002. Practical Business Forecasting. 1st ed. UK: Blackwell
Publish.
Hashim,
M.H.M. & Khider, M.A. 2017. Improving blast design for optimum rock
breakage sustainable operations. International Journal of Society for Social
Management System 11(1): 224-234.
Hutchison,
C.S. 1997. Granite emplacement and tectonic subdivision of Peninsular Malaysia. Geological Society of Malaysia Bulletin 9: 187-207.
IBM
SPSS Data Collection Divesture. 2016. Divesture Announc. of IBM. USA:
IBM.
Jabatan
Mineral & Geosains (JMG). 2004. Geo. Map of West Malaysia Mod. 8th
ed. 1: 750,000. Kuala Lumpur.
Juna,
A.A.A.G. & Syed, F.S.H. 2013. The importance of K and β values for
scaled distance technique for prediction of ground vibrations level induced
during granite quarry blasting for Peninsular Malaysia. National Geoscience
Conference 25-26 May. Ipoh, Perak, B16.
Karlos,
V. & Solomos, G. 2013. Calculation of Blast Loads for Application to
Structural Components. Italy: JRC Technical Reports.
Kopp,
J.W. & Siskind, D.W. 1986. Effects of Millisecond- Delay Intervals on
Vibration and Air Blast from Surface Coal Mine Blasting. Bureau of Mines
Report of Investigation 9026: 44.
Krehl,
P.O.K. 2008. History of Shock Waves, Explosions and Impact: A Chronological
and Biographical Reference. 1st ed. Germany: Springer.
Kumar,
R., Choudhury, D. & Bhargava, K. 2016. Determination of blast induced
ground vibration equations for rocks using mechanical and geological
properties. Journal of Rock Mechanics and Geotechnical Engineering 8(3):
341-349.
Lamotte,
A. 1978. Blaster’s Handbook. 16th ed. Wilmington, Delaware: DuPont de
Nemours & INC.
Mohamad,
E.T., Danial, J.A. & Hossein, M. 2013. The effect of geological structure
and powder factor in flyrock accident, Masai, Johor, Malaysia. EJGE 18:
5661-5672.
Niklasson,
B., Olsson, M. & Beyglou, A. 2014. Does Charge Confinement Affect the
Vibration Level in Blasting? Phase 1 - Feasibility Study. BeFo Report 132,
Stockholm.
NONEL
User's Manual. 2008. NONEL System. USA: DYNO Nobel.
New
South Wales (NSW) Minerals Council. 2009. Fact Sheet- Blasting and the NSW
Minerals Industry. Sydney, Australia: NSWMC.
Sazid,
M. & Singh, T.N. 2012. Economically and environmental friendly control
blasting results through stemming plug. Int. Mining Congress and Expo.
26 - 29 Oct. Tehran, Iran. pp. 1-13.
Sharma,
A. 2017. Estimating the effects of blasting vibrations on the high
wall stability. MSc Thesis, University of Kentucky, USA (Unpublished).
Shirani Faradonbeh, R.,
Jahed Armaghani, D., Abdul Majid, M.Z., Tahir, M.D., Ramesh, M., Murlidhar, B.,
Monjezi, M. & Wong, H.M. 2016. Prediction of ground vibration due to quarry
blasting based on gene expression programming: A new model for peak particle
velocity prediction. International Journal of Environmental, Science and
Technology 13:
1453-1464.
Sia, C.C. & Rozi,
M.U. 2002. Kajian geokimia batuan igneus sekitar Gunung Pulai, Johor. GSM
Annual Geological Conference, Kota Bharu, Kelantan. pp. 71-80.
Singh, P.K., Roy, M.P.,
Paswan, R.K., Sarim, Md., Kumar, S. & Jha, R.R. 2016. Rock fragmentation
control in opencast blasting. Journal of Rock Mechanics and Geotechnical
Engineering 8(2): 225-237.
Siskind, D.E., Stagg,
M.S., Kopp, J.W. & Dowding, C.H. 1980. Structure Response and Damage
Produced by Ground Vibrations from Surface Blasting, RI 8507. Washington:
United States Bureau of Mines (USBM).
Yilmaz, T., Karaman, K.,
Cihangir, F., Ercikdi, B. & Kersimal, A. 2016. Effect of tunnel blasting
operation on the surface penstock pipe. IOP Conference Series: Earth and
Environmental Sciences 44: 052010.
*Pengarang untuk
surat-menyurat; email: karthigeyan-1994@graduate.utm.my
|