Sains Malaysiana 48(8)(2019): 1575–1581
http://dx.doi.org/10.17576/jsm-2019-4808-02
Dependency
of Biological Contaminants on Temperature and Relative Humidity
within Praying Halls of Mosques
(Pergantungan
Pencemaran Biologi
pada Suhu dan
Kelembapan di dalam
Ruang Solat Masjid)
NUR BAITUL
IZATI
RASLI1,
NOR
AZAM
RAMLI1,
MOHD
RODZI
ISMAIL2*
& SYABIHA SHITH1
1Environmental Assessment
and Clean Air Research (EACAR), School of Civil Engineering, Engineering
Campus, Universiti Sains
Malaysia, 14300 Nibong Tebal,
Pulau Pinang, Malaysia
2School of Housing
Building and Planning, Universiti Sains Malaysia, 11800 USM, Pulau
Pinang, Malaysia
Diserahkan: 20 Januari 2019/Diterima: 12 Mei 2019
ABSTRACT
The widespread use of Air Conditioning
Split Units (ACSU) to cool the air inside mosques
may pose potential adverse health effects, secondary to exposure
to biological contaminants. To address this issue, the dependencies
of biological contaminants (bacteria and fungi) on temperature (T)
and relative humidity (RH)
of the 'mosques’ indoor air were evaluated. A total of 25 mosques
were investigated during the periods in which their respective congregators
were performing Zohor or
Friday, and Asar prayers.
The recorded average indoor bacteria and fungi concentrations were
382.6±143.9 cfu/m3 and 229.4±165.5 cfu/m3,
respectively. However, the study found that masses of bacteria aerosol
within the indoors of certain mosques (10 out of 17 ACSU mosques
and 1 out of 8 non-ACSU mosques) exceeded the limit recommended
by Malaysian standard for indoor air quality (500 cfu/m3). Meanwhile, the results of regression
analyses suggested that T and RH of the indoor air have high influence
on airborne bacteria and fungi. The variations in bacteria concentrations
due to the influence of T and RH in
ACSU
mosques (T= 92.3%; RH= 90.3%) were higher than in
non-ACSU mosques (T= 82.75%; RH=
81.7%) whereas the variations in fungi concentrations in non-ACSU mosques
(T=70.45%; RH= 71.45%) were higher than in ACSU mosques
(T= 66.05%; RH= 60.7%). This research shows that the growth of bacteria
and fungi within the prayer halls of mosques in Malaysia is very
much dependent on its indoor T and RH.
Keywords: Biological contaminants;
indoor air; mosque; relative humidity; temperature
ABSTRAK
Penggunaan meluas Penyaman Udara Unit Pisah (ACSU)
untuk menyejukkan
udara di dalam masjid boleh menimbulkan potensi kesan kesihatan
yang buruk, membawa
pendedahan kepada bahan cemar biologi.
Bagi menangani
isu ini, kebergantungan
bahan cemar
biologi (bakteria dan kulat) terhadap
suhu (T) dan
kelembapan relatif (RH)
daripada udara
dalaman masjid telah dinilai. Sebanyak 25 buah masjid telah dikaji dalam tempoh
para jemaah masing-masing
sedang melaksanakan solat Zohor atau Jumaat, dan Asar. Purata kepekatan bakteria dan kulat
di ruang dalaman
yang direkodkan masing-masing adalah 382.6 ± 143.9 cfu/m3 dan 229.4 ± 165.5 cfu/m3.
Walau bagaimanapun,
kajian ini mendapati
bahawa jisim
aerosol bakteria di dalam ruang dalaman bangunan
masjid tertentu (10 daripada
17 masjid ACSU dan 1 daripada
8 masjid bukan ACSU) melebihi
had yang disyorkan oleh
piawai Malaysia bagi kualiti udara dalaman
(500 cfu/m3). Sementara
itu, hasil daripada analisis regresi menunjukkan bahawa T dan RH daripada udara dalaman mempunyai pengaruh yang tinggi terhadap bakteria bawaan udara dan
kulat. Variasi
dalam kepekatan bakteria akibat pengaruh T dan RH di
masjid ACSU (T = 92.3%; RH = 90.3%) adalah
lebih tinggi
daripada di masjid bukan ACSU
(T = 82.75%; RH = 81.7%) manakala
variasi dalam
kepekatan kulat di masjid bukan ACSU (T = 70.45%; RH =
71.45%) adalah lebih
tinggi daripada di masjid ACSU
(T = 66.05%; RH = 60.7%). Kajian
ini menunjukkan
bahawa pertumbuhan bakteria dan kulat
di dalam dewan solat
masjid di Malaysia sangat bergantung
kepada T dan
RH
bagi udara dalamannya.
Kata
kunci: Bahan
cemar biologi; kelembapan relatif; masjid; suhu; udara dalaman
RUJUKAN
Alananbeh, K.M., Boquellah, N., Al Kaff, N. &
Al Ahmadi, M. 2017. Evaluation of aerial microbial pollutants in
Al-Haram Al-Nabawi during pilgrimage of 2013. Saudi Journal of Biological
Sciences 24: 217-225.
Backman, H., Hedman, L., Jansson, S.A., Lindberg,
A., Lundbäck, B. & Rönmark,
E. 2014. Prevalence trends in respiratory symptoms and asthma in
relation to smoking-two cross-sectional studies ten years apart
among adults in Northern Sweden. World Allergy Organization Journal
7(1): 1-10.
Bornehag, C.G., Blomquist, G., Gyntelberg, F., Jarvholm, B., Malmberg, P., Nordvall, L. & Sundell, J. 2001.
Dampness in buildings and health. Indoor Air 11(2): 72-86.
DM. 2001. Department
of Microbiology. Mount Sinai Hospital. Procedure Manual Toronto
Medical Laboratories. Sterility Testing Manual: Air Sampling. Canada.
17-18. https://eportal. mountsinai.ca/Microbiology//manual/ster/mi_ster.pdf.
DOSH. 2010.Department
of Occupational Safety and Health. Industry code of practice on
indoor air quality. Malaysia: Ministry of Human Resources, pp. 1-39.
Hameed, A.A. &
Habeeballah, T. 2013. Air microbial contamination
at the holy mosque, Makkah, Saudi Arabia. Current World Environment
8(2): 179-187.
Hamimah, S., Baba, D.
& Abd. Mutalib,
L. 2010. Indoor air quality issues for non-industrial work place.
International Journal of Research and Review in Applied Sciences
5(3): 235-244.
Junninen, H., Niska, H.,
Tuppurainen, K., Ruuskanen,
J. & Kolehmainen, M. 2004. Methods
for imputation of missing values in air quality data sets. Atmospheric
Environment 38(18): 2895-2907.
Kamaruzzaman, S.N. & Razak, R.A. 2011. Measuring indoor air quality performance
in Malaysian government kindergarten. Journal of Building Performance
2(1): 70-79.
Kousar, S., Mustafa.
G. & Jamil, A. 2013. Microbial xylosidases:
Production and biochemical characterization. Pakistan Journal
of Life and Social Science 11(2): 85-95.
Makhtar, N.K.,
Ismail, A.R., Jusoh, N. & Puvanasvaran, A.P. 2010.
Thermal comfort in technical school: Physical measurement approach.
National Conference in Mechanical Engineering Research and Postgraduate
Studies (2nd NCMER 2010). pp. 755-761.
Mashat, B. 2015. Indoor
and outdoor microbial aerosols at the holy mosque: A case study.
Atmospheric Pollution Research 6(6): 990-996.
Meklin, T., Reponen, T., Toivola, M., Koponen, V., Husman, T., Hyvärinen, A. & Nevalainen,
A. 2002. Size distributions of airborne microbes in moisture-damaged
and reference school buildings of two construction types. Atmospheric
Environment 36(39-40): 6031-6039.
Mendell, M.J., Macher, J.M. & Kumagai, K. 2014.
Indoor dampness and mold as indicators of respiratory health risks,
Part 3: A synthesis of published data on indoor measured moisture
and health. International Society of Indoor Air Quality and Climate
(ISIAQ) Proceedings of Indoor Air 1: 727-734.
Mouli, P., Mohan, S.
& Reddy, S. 2005. Assessment of microbial (bacteria) concentrations
of ambient air at semi-arid urban region: Influence of meteorological
factors. Applied Ecology and Environmental Research 3(2):
139-149.
MS. 2014. Malaysian
Standard. MS 2577: 2014. Architecture and asset management of masjid
- Code of practice. Department of Standards Malaysia. Malaysia.
Mukaka, M. 2012. A guide
to appropriate use of correlation coefficient in medical research.
Malawi Medical Journal 24(3): 69-71.
Mustapha, A.A.,
Ayop, S.M., Ahmad, M.K. & Ismail, F. 2008. A thermal comfort
study in naturally ventilated school building in Malaysia. Built
Environment Journal 5(2): 66-82.
Nahar, N. & Mahyudin, N.A. 2018. Microbiological quality of food contact
surfaces (spoons) at selected restaurants in Klang
Valley, Malaysia. Sains Malaysiana
47(7): 1541-1545.
NIOSH. 1998. National
Institute for Occupational Safety and Health. Bioaerosol
sampling (Indoor Air) 0800: Culturable
organisms bacteria, fungi, thermophilic actinomycetes,
NIOSH Manual of Analytical Methods (NMAM), 4th ed. Washington, D.C.:
National Institute for Occupational Safety and Health.
Noman, F.G., Kamsah,
N. & Kamar, H.M. 2016. Improvement
of thermal comfort inside a mosque building. Jurnal
Teknologi 78(8-5): 9-18.
Norhidayah, A., Chia-Kuang,
L., Azhar, M.K. & Nurulwahida,
S. 2013. Indoor air quality and sick building syndrome in three
selected buildings. Procedia Engineering 53: 93-98.
Rajasekar, A. & Balasubramanian,
R. 2011. Assessment of airborne bacteria and fungi in food courts.
Building and Environment 46(10): 2081-2087.
Ross, T. & Nichols, D.S. 2014.
Ecology of bacteria and fungi in foods: Influence of temperature.
In. Encyclopedia of Food Microbiology, edited by Batt, C.A.
& Tortorello, M.L. 2nd ed. Amsterdam:
Academic Press. pp. 602-609.
Sulaiman, N., Abdullah, M. & Chieu, P.L.P. 2005. Concentration and composition
of PM10 in outdoor and indoor air in industrial area
of Balakong Selangor, Malaysia. Sains
Malaysiana 34(2): 43-47.
Zock, J.P., Jarvis, D., Luczynska, C., Sunyer, J. &
Burney, P. 2002. Housing characteristics, reported mold exposure,
and asthma in the European community respiratory health survey.
Journal of Allergy and Clinical Immunology 110(2): 285-292.
*Pengarang
untuk surat-menyurat;
email: rodzi@usm.my
|