Sains Malaysiana 48(8)(2019): 1575–1581

http://dx.doi.org/10.17576/jsm-2019-4808-02

 

Dependency of Biological Contaminants on Temperature and Relative Humidity within Praying Halls of Mosques

(Pergantungan Pencemaran Biologi pada Suhu dan Kelembapan di dalam Ruang Solat Masjid)

 

NUR BAITUL IZATI RASLI1, NOR AZAM RAMLI1, MOHD RODZI ISMAIL2* & SYABIHA SHITH1

 

1Environmental Assessment and Clean Air Research (EACAR), School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

2School of Housing Building and Planning, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia

 

Diserahkan: 20 Januari 2019/Diterima: 12 Mei 2019

 

ABSTRACT

The widespread use of Air Conditioning Split Units (ACSU) to cool the air inside mosques may pose potential adverse health effects, secondary to exposure to biological contaminants. To address this issue, the dependencies of biological contaminants (bacteria and fungi) on temperature (T) and relative humidity (RH) of the 'mosques’ indoor air were evaluated. A total of 25 mosques were investigated during the periods in which their respective congregators were performing Zohor or Friday, and Asar prayers. The recorded average indoor bacteria and fungi concentrations were 382.6±143.9 cfu/m3 and 229.4±165.5 cfu/m3, respectively. However, the study found that masses of bacteria aerosol within the indoors of certain mosques (10 out of 17 ACSU mosques and 1 out of 8 non-ACSU mosques) exceeded the limit recommended by Malaysian standard for indoor air quality (500 cfu/m3). Meanwhile, the results of regression analyses suggested that T and RH of the indoor air have high influence on airborne bacteria and fungi. The variations in bacteria concentrations due to the influence of T and RH in ACSU mosques (T= 92.3%; RH= 90.3%) were higher than in non-ACSU mosques (T= 82.75%; RH= 81.7%) whereas the variations in fungi concentrations in non-ACSU mosques (T=70.45%; RH= 71.45%) were higher than in ACSU mosques (T= 66.05%; RH= 60.7%). This research shows that the growth of bacteria and fungi within the prayer halls of mosques in Malaysia is very much dependent on its indoor T and RH.

 

Keywords: Biological contaminants; indoor air; mosque; relative humidity; temperature

 

ABSTRAK

Penggunaan meluas Penyaman Udara Unit Pisah (ACSU) untuk menyejukkan udara di dalam masjid boleh menimbulkan potensi kesan kesihatan yang buruk, membawa pendedahan kepada bahan cemar biologi. Bagi menangani isu ini, kebergantungan bahan cemar biologi (bakteria dan kulat) terhadap suhu (T) dan kelembapan relatif (RH) daripada udara dalaman masjid telah dinilai. Sebanyak 25 buah masjid telah dikaji dalam tempoh para jemaah masing-masing sedang melaksanakan solat Zohor atau Jumaat, dan Asar. Purata kepekatan bakteria dan kulat di ruang dalaman yang direkodkan masing-masing adalah 382.6 ± 143.9 cfu/m3 dan 229.4 ± 165.5 cfu/m3. Walau bagaimanapun, kajian ini mendapati bahawa jisim aerosol bakteria di dalam ruang dalaman bangunan masjid tertentu (10 daripada 17 masjid ACSU dan 1 daripada 8 masjid bukan ACSU) melebihi had yang disyorkan oleh piawai Malaysia bagi kualiti udara dalaman (500 cfu/m3). Sementara itu, hasil daripada analisis regresi menunjukkan bahawa T dan RH daripada udara dalaman mempunyai pengaruh yang tinggi terhadap bakteria bawaan udara dan kulat. Variasi dalam kepekatan bakteria akibat pengaruh T dan RH di masjid ACSU (T = 92.3%; RH = 90.3%) adalah lebih tinggi daripada di masjid bukan ACSU (T = 82.75%; RH = 81.7%) manakala variasi dalam kepekatan kulat di masjid bukan ACSU (T = 70.45%; RH = 71.45%) adalah lebih tinggi daripada di masjid ACSU (T = 66.05%; RH = 60.7%). Kajian ini menunjukkan bahawa pertumbuhan bakteria dan kulat di dalam dewan solat masjid di Malaysia sangat bergantung kepada T dan RH bagi udara dalamannya.

 

Kata kunci: Bahan cemar biologi; kelembapan relatif; masjid; suhu; udara dalaman

 

RUJUKAN

Alananbeh, K.M., Boquellah, N., Al Kaff, N. & Al Ahmadi, M. 2017. Evaluation of aerial microbial pollutants in Al-Haram Al-Nabawi during pilgrimage of 2013. Saudi Journal of Biological Sciences 24: 217-225.

Backman, H., Hedman, L., Jansson, S.A., Lindberg, A., Lundbäck, B. & Rönmark, E. 2014. Prevalence trends in respiratory symptoms and asthma in relation to smoking-two cross-sectional studies ten years apart among adults in Northern Sweden. World Allergy Organization Journal 7(1): 1-10.

Bornehag, C.G., Blomquist, G., Gyntelberg, F., Jarvholm, B., Malmberg, P., Nordvall, L. & Sundell, J. 2001. Dampness in buildings and health. Indoor Air 11(2): 72-86.

DM. 2001. Department of Microbiology. Mount Sinai Hospital. Procedure Manual Toronto Medical Laboratories. Sterility Testing Manual: Air Sampling. Canada. 17-18. https://eportal. mountsinai.ca/Microbiology//manual/ster/mi_ster.pdf.

DOSH. 2010.Department of Occupational Safety and Health. Industry code of practice on indoor air quality. Malaysia: Ministry of Human Resources, pp. 1-39.

Hameed, A.A. & Habeeballah, T. 2013. Air microbial contamination at the holy mosque, Makkah, Saudi Arabia. Current World Environment 8(2): 179-187.

Hamimah, S., Baba, D. & Abd. Mutalib, L. 2010. Indoor air quality issues for non-industrial work place. International Journal of Research and Review in Applied Sciences 5(3): 235-244.

Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J. & Kolehmainen, M. 2004. Methods for imputation of missing values in air quality data sets. Atmospheric Environment 38(18): 2895-2907.

Kamaruzzaman, S.N. & Razak, R.A. 2011. Measuring indoor air quality performance in Malaysian government kindergarten. Journal of Building Performance 2(1): 70-79.

Kousar, S., Mustafa. G. & Jamil, A. 2013. Microbial xylosidases: Production and biochemical characterization. Pakistan Journal of Life and Social Science 11(2): 85-95.

Makhtar, N.K., Ismail, A.R., Jusoh, N. & Puvanasvaran, A.P. 2010. Thermal comfort in technical school: Physical measurement approach. National Conference in Mechanical Engineering Research and Postgraduate Studies (2nd NCMER 2010). pp. 755-761.

Mashat, B. 2015. Indoor and outdoor microbial aerosols at the holy mosque: A case study. Atmospheric Pollution Research 6(6): 990-996.

Meklin, T., Reponen, T., Toivola, M., Koponen, V., Husman, T., Hyvärinen, A. & Nevalainen, A. 2002. Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment 36(39-40): 6031-6039.

Mendell, M.J., Macher, J.M. & Kumagai, K. 2014. Indoor dampness and mold as indicators of respiratory health risks, Part 3: A synthesis of published data on indoor measured moisture and health. International Society of Indoor Air Quality and Climate (ISIAQ) Proceedings of Indoor Air 1: 727-734.

Mouli, P., Mohan, S. & Reddy, S. 2005. Assessment of microbial (bacteria) concentrations of ambient air at semi-arid urban region: Influence of meteorological factors. Applied Ecology and Environmental Research 3(2): 139-149.

MS. 2014. Malaysian Standard. MS 2577: 2014. Architecture and asset management of masjid - Code of practice. Department of Standards Malaysia. Malaysia.

Mukaka, M. 2012. A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal 24(3): 69-71.

Mustapha, A.A., Ayop, S.M., Ahmad, M.K. & Ismail, F. 2008. A thermal comfort study in naturally ventilated school building in Malaysia. Built Environment Journal 5(2): 66-82.

Nahar, N. & Mahyudin, N.A. 2018. Microbiological quality of food contact surfaces (spoons) at selected restaurants in Klang Valley, Malaysia. Sains Malaysiana 47(7): 1541-1545.

NIOSH. 1998. National Institute for Occupational Safety and Health. Bioaerosol sampling (Indoor Air) 0800: Culturable organisms bacteria, fungi, thermophilic actinomycetes, NIOSH Manual of Analytical Methods (NMAM), 4th ed. Washington, D.C.: National Institute for Occupational Safety and Health.

Noman, F.G., Kamsah, N. & Kamar, H.M. 2016. Improvement of thermal comfort inside a mosque building. Jurnal Teknologi 78(8-5): 9-18.

Norhidayah, A., Chia-Kuang, L., Azhar, M.K. & Nurulwahida, S. 2013. Indoor air quality and sick building syndrome in three selected buildings. Procedia Engineering 53: 93-98.

Rajasekar, A. & Balasubramanian, R. 2011. Assessment of airborne bacteria and fungi in food courts. Building and Environment 46(10): 2081-2087.

Ross, T. & Nichols, D.S. 2014. Ecology of bacteria and fungi in foods: Influence of temperature. In. Encyclopedia of Food Microbiology, edited by Batt, C.A. & Tortorello, M.L. 2nd ed. Amsterdam: Academic Press. pp. 602-609.

Sulaiman, N., Abdullah, M. & Chieu, P.L.P. 2005. Concentration and composition of PM10 in outdoor and indoor air in industrial area of Balakong Selangor, Malaysia. Sains Malaysiana 34(2): 43-47.

Zock, J.P., Jarvis, D., Luczynska, C., Sunyer, J. & Burney, P. 2002. Housing characteristics, reported mold exposure, and asthma in the European community respiratory health survey. Journal of Allergy and Clinical Immunology 110(2): 285-292.

 

*Pengarang untuk surat-menyurat; email: rodzi@usm.my

 

 

 

sebelumnya