Sains Malaysiana 48(8)(2019): 1745–1752

http://dx.doi.org/10.17576/jsm-2019-4808-21

 

Novel Surface-Enhanced Raman Scattering Substrate based on Functionalized Silicon Nanowires

(Raman Permukaan-Dipertingkatkan Sebaran Substrat Baru berasaskan Silikon Berfungsi Wayar Nano)

 

IRAM MAHMOOD1*, ISHAQ AHMAD2,3 & ISHFAQ AHMAD4

 

1Department of Industrial Engineering, College of Engineering, King Khalid University Abha 61413, Kingdom of Saudi Arabia

  

2National Center for Physics, Islamabad, 44000, Pakistan

 

3NPU-NCP Joint International Research Center for Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China

 

4Department of Mathematics and Statistics, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan

 

Diserahkan: 11 Februari 2019/Diterima: 21 Mei 2019

 

ABSTRACT

This study reports synthesis of a new Surface-Enhanced Raman Scattering (SERS) substrate using Silicon nanowires (SiNW's) arrays, produced through chemical etching, and functionalized by tailoring their surface chemistry with nitrogen containing groups. From SEM characterization, phenomenon of micro channel formation, porosity and amorphous nature for the as prepared SiNWs was observed. Photoluminescence (PL) spectrum showed that these nanowires have broad emission band in the range of 500-900 nm. Also, change in the surface chemistry of Si nanowires after nitrogen treatment was observed by elemental analysis, EDX and X-ray photoelectron spectroscopy. The data showed that raising the modification temperature also increased the nitrogen content. At high temperature, pyridine and aromatic amines were the dominant functional groups while a small amount of quaternary nitrogen and protonated amide were also present. Methylene blue (MB) was used as a probe molecule to investigate SERS activities of functionalized SiNWs. The enhancement factor was estimated to be 107-109. Interaction of nitrogen containing groups on the surface of SiNWs with MB molecules resulted in high adsorption of MB on the substrate and higher signal detection by SERS.

 

Keywords: Methylene blue; photoluminescence; Raman scattering; surface enhanced Raman scattering; silicon nanowires

 

ABSTRAK

Kajian ini melaporkan sintesis substrak Raman Permukaan-Dipertingkatkan Sebaran (SERS) menggunakan susunan nanowayar silikon melalui proses punaran secara kimia, serta penukaran sifat kimia permukaan dengan kumpulan berfungsi bernitrogen. Melalui pencirian SEM, pembentukan saluran mikro, liang dan ciri-ciri amorfous telah diperhatikan. Spektrum fotoluminesens menunjukkan bahawa nanowayar yang terhasil mempunyai jalur pancaran lebar dalam julat 500-900 nm. Di samping itu, perubahan kimia permukaan nanowayar selepas rawatan nitrogen telah dikaji dengan analisis unsur, EDX dan spektroskopi fotoelektron sinar-X. Data yang diperoleh menunjukkan bahawa ubahsuaian melalui suhu juga meningkatkan kandungan nitrogen. Pada suhu tinggi, piridina dan amina aromatik adalah kumpulan berfungsi utama dengan terdapat kandungan kecil nitrogen kuaternari dan amida juga terbentuk. Metilena biru (MB) telah digunakan sebagai molekul model untuk mengkaji aktiviti SERS bagi substrak SiNWs yang terhasil. Faktor peningkatan sebanyak 107-109 telah diperoleh. Interaksi antara kumpulan berfungsi nitrogen pada permukaan SiNWs dan molekul MB menyebabkan penjerapan MB yang tinggi, lalu mencapai pengesanan isyarat SERS yang tinggi.

 

Kata kunci: Fotoluminesens; metilena biru; serakan Raman; serakan Raman permukaan dipertingkatkan; silikon nanowayar

RUJUKAN

Baia, L., Baia, M. & Popp, A.J. 2006. Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J. Phys. Chem. B. 110(47): 23982-23986.

Chun, H.E. & Xijun, H.U. 2011. Anionic dye adsorption on chemically modified ordered mesoporous carbons. Ind. Eng. Chem. Res. 50(24): 14070-14083.

Cotton, T.M., Kim, J.H. & Chumanov, G.D. 1991. Application of surface-enhanced Raman spectroscopy to biological-systems. J. Raman Spectrosc. 22(12): 729-742.

Green, M. & Liu, F.M. 2003. SERS substrates fabricated by island lithography: The silver/pyridine system. J. Phys. Chem. B 107(47): 13015-13021.

Hulchineon, K., Heater, R., Albery, J. & Hillman, A.R. 1984. Raman Spectroscopic studies of a thionine modified electrode. J. Chem. Soc. Faraday Trans. 80: 2053-2071.

Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R. & Feld, M.S. 1997. Single molecule detection using surface-enhanced raman scattering. Phys. Rev. Lett. 78(9): 1667-1670.

Laurent, G., Fe´lidj, N., Aubard, J., Le´vi, G., Krenn, J.R., Hohenau, A., Schider, G., Leitner, A. & Aussenegg, F.R. 2005. Evidence of multipolar excitations in surface enhanced Raman scattering. Phys. Rev. B. 71(4): 045430.

Li, B., Yu, D. & Zhang, S. 1999. Raman Spectral study of silicon nanowires. Phys. Rev. B 59(3): 1645-1648.

Naujok, R.R., Duevel, R.V. & Corn, R.M. 1993. Fluorescence and Fourier transform surface-enhanced Raman scattering measurements of methylene blue adsorbed onto a sulfur-modified gold electrode. Langmuir 9(7): 1771-1774.

Nie, S. & Emory, S.R. 1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303): 1102-1106.

Pavan, G.V., Kumar, S., Shruthi, B., Vibha, B.A., Ashok, R., Kundu, T.K. & Narayana, C. 2007. Hot spots in Ag core- Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J. Phys. Chem. C. 111(11): 4388-4392.

Qianwang, C., Zhu, J., Lia, X.G., Fanab, C.G. & Zhang, Y.H. 1996. Photoluminescence from porous silicon obtained by hydrothermal etching. Physics Letters A 220(4-5): 293-296.

Ruan, C., Luo, W., Wang, W. & Gu, B. 2007. Single-molecule detection of thionine on aggregated gold nanoparticles by surface enhanced Raman scattering. J. Raman Spectrosc. 38(5): 568-573.

Tian, J.H., Liu, B., Li, X., Yang, Z.L., Ren, B., Wu, S.T. & Tian, Z.Q. 2006. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128(46): 14748- 14749.

Torchynska, T.V., Cano, A.D., Rodriguez, M.M. & Khomenkova, L.Y. 2003. Hot carriers and excitation of Si/SiOx interface defect photoluminescence in Si nanocrystallites. Physica B 340: 1113-1118.

Xiao, G.N. & Man, S.Q. 2007. Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chemical Physics Letters 447(4): 305-309.

Zhang, M.L., Fan, X., Zhou, H.W., Shao, M.W., Zapien, J.A., Wong, N.B. & Lee, S.T. 2010. A high-efficiency surface-enhanced Raman scattering substrate based on silicon nanowires array decorated with silver nanoparticles. J. Phys. Chem. C 114(5): 1969-1975.

Zhang, M.L., Peng, K.Q., Fan, X., Jie, J.S., Zhang, R.Q., Lee, S.T. & Wong, N.B. 2008. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. Phys. Chem. C 112(12): 4444-4450.

 

*Pengarang untuk surat-menyurat; email: irahmad@kku.edu.sa

 

 

 

sebelumnya