Sains Malaysiana 48(9)(2019): 1913–1918
http://dx.doi.org/10.17576/jsm-2019-4809-12
Penghasilan Zarah Nano
Ferum Oksida (FeNPs) daripada Garam Ferosenium menggunakan Hidrogel Poli-Akril
Amida (P(Am) sebagai Templat
(Preparation
of Ferum Oxide Nanoparticles (FeNPs) from Ferocenium Salt using
Polyacrylamide (P(Am) as Template)
MELLISSA ANDARINI1, MARYAM MOKHTAROM1, BOHARI M. YAMIN1, M. CAIRUL IQBAL M. AMIN2 & AZWAN MAT LAZIM1*
1Pusat Bahan Termaju
& Sumber Keterbaharuan, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Penyelidikan
Fakulti Farmasi, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300
Kuala Lumpur, Wilayah Persekutuan, Malaysia
Diserahkan:
1 Januari 2019/Diterima: 18 Julai 2019
ABSTRAK
Kajian ini adalah
bertujuan mengkaji potensi hidrogel sebagai templat nanoreaktor bagi
menghasilkan zarah nano ferum oksida (FeNps). Hidrogel Poli-AkrilAmida (PAAm)
telah dihasilkan dengan menggunakan kaedah pempolimeran radikal bebas.
Keupayaan penyerapan air dalam hidrogel telah diuji dan nisbah pembengkakan
tertinggi telah berlaku pada larutan penimbal pH10. Hidrogel yang terhasil
telah dicirikan dengan menggunakan pengimbas mikroskop elektron (SEM)
diikuti dengan spektroskopi serakan tenaga X-ray (SEM-EDEX)
untuk menentukan jumlah peratusan ferum (Fe). Selepas proses pengkalsinan,
zarah nano diekstrak daripada hidrogel PAAm dan seterusnya dianalisis
menggunakan mikroskop transmisi elektron (TEM)
dan analisis pembelauan sinar-X (XRD). Hasil TEM telah
menunjukkan bahawa saiz zarah yang dihasilkan adalah antara 5 - 20 nm. Analisis XRD pula mengesahkan kehadiran zarah ferum oksida (Fe2O3).
Keputusan ini menunjukkan bahawa hidrogel berpotensi digunakan sebagai nanoreaktor
bagi menghasilkan zarah nano.
Kata kunci: Ferosenium;
hidrogel poli-akril amida (PAAm); nanoreaktor; pengkalsinan; zarah nano ferum
oksida (FeNps)
ABSTRACT
The aim of this study
was to investigate the feasibility of hydrogel to produce ferum oxide
nanoparticles (FeNps). The polyacrylamide (PAAm) hydrogel was synthesized by
using free radical polymerization method. The hydrogel water uptake ability has
been conducted and the highest swelling ratio was occured at pH10 basic buffer
solution. Hydrogel was characterized by using scanning electron microscopy (SEM)
followed by energy dispersive X-ray spectroscopy (SEM-EDEX)
to determine the iron (Fe) percentage. After calcination process, nanoparticles
were extracted from the PAAm hydrogel and further analysed using transmission
electron microscopy (TEM) and X-ray diffraction analysis (XRD). TEM results showed that the particles diameter was in ranged of 5 -
20 nm. XRD examination confirmed the existance of ferum oxide
particles (Fe2O3). The result demonstrates the
feasibility of using hydrogel as a promising nanoreactor.
Keywords: Calcination;
feroccenium; ferum oxide nanoparticles (FeNps); nanoreactor; polyacrylamide
(PAAm) hydrogel
RUJUKAN
Abdullah, M.F.,
Azfaralariff, A. & Mat Lazim, A. 2018. Methylene blue removal by using
pectin-based hydrogels extracted from dragon fruit peel waste using gamma and
microwave radiation polymerization techniques. Journal of Biomaterials
Science: Polymer Edition 29(14): 1745-1763.
Agus, S. & Suwardi.
2009. Sintesis hydrogel superabsorbent berbasis akrilamida dan asam akrilat
pada kondisi atmosfer. Jurnal Penelitian Saintek 14(1): 1-16.
Andarini, M., Mokhtarom,
M., Mohd. Yamin, B., Mohd Amin, M.C.I., Hassan, N.I. & Mat Lazim, M.A.S.
2017. Aplikasi hidrogel daripada selulosa bakteria (BC-g-PAA) sebagai
nanoreaktor bagi menghasilkan nanozarah ferum oksida (FeNps). Sains
Malaysiana 46(10): 1789-1795.
Antonio, F.B., Ivan,
J.S., Sierra, B.M., Fernandez, A.N., Javier, F.N., Manuel, M., Rubio, J.R.
& Enrique, L.C. 2009. Gels and microgels for nanotechnological application. Advances in Colloid and Interface Science 147-148: 88-108.
Ashri, A., Yusof, M.,
Jamil, M., Abdullah, A., Yusoff, S., Arip, M. & Lazim, A. 2014.
Physicochemical characterization of starch extracted from malaysian wild yam (Dioscorea
Hispida Dennst.). Emirates Journal of Food and Agriculture 26(8):
652-658.
Azman, I., Mutalib,
S.A., Yusoff, M.S.F., Fazry, S., Noordin, A., Kumaran, M. & Lazim, A.M.
2016. Novel Dioscorea hispida starch-based hydrogels and their
beneficial use as disinfectants. Journal of Bioactive and Compatible
Polymers 31(1): 42-59.
Erizal, A., Dewi, S.
& Darmawan, P.D. 2002. Sintesis dan karaterisasi hydrogel poli(akrilamida)
hasil iradiasi gamma. Prosiding Pertemuan Ilmiah Ilmu Pengetahuan dan
Teknologi Bahan. m.s. 1411-2213.
Fahriye, S. &
Nurettin, S. 2013. Poly(acrylamide-co-vinyl sulfonic acid) p(AAm-co-VSA)
hydrogel templates for Co and Ni metal nanoparticle preparation and their use
in hydrogen production. Journal of Hydrogen Energy 38: 777-784.
Hakam, A., Abdul Rahman,
I., Md. Jamil, M.S., Othaman, R., Mohd Amin, M.C.I. & Mat Lazim, M.A.S.
2015. Removal of methylene blue dye in aqueous solution by sorption on a
bacterial-g-poly-(acrylic acid) polymer network hydrogel. Sains Malaysiana 44(6):
827-834.
Mat Lazim, A., Osman ,
A.H. & Mokhtarom, M. 2018. Kebolehserapan metilena biru oleh hidrogel
selulosa bakteria teradiasi gamma menggunakan isoterma Langmuir dan Freundlich. Sains Malaysiana 47(4): 715-723.
Liew, M., Rizafizah, O.,
Rozida K., Amin, M.C.I.M. & Azwan, M.L. 2013. Synthesis of hydrogel based
on Nata De Coco and acrylic acid as co-monomer using free radical
polymerization method. Malaysian Journal of Analytical Sciences 18(2):
299-305.
Mahnaz, M., Mansor, A.,
Jelas, M.H., Farideh, N., Bezad, N., Zaki, M.R. & Jamileh, A. 2013.
Synthesis, surface modification and characterisation of biocompatible magnetic
iron oxide nanoparticles for biomedical application. Molecules 18:
7533-7548.
Murali, Y.M., Kyungjae,
L., Thathan, P. & Kurt, E.G. 2007. Hydrogel networks as nanoreactors: A
novel approach to silver nanoparticles for antibacterial application. Polymer 48: 158-164.
Murali, Y.M., Vimala,
K., Varsha, T., Varaprasad, K., Sreedhar, B., Bajpai, S.K. & Mohana, K.R. 2010.
Controlling of silver nanoparticles structure by hydrogel network. Journal
of Colloid and Interface Science 342: 73-82.
Murthy, P.S.K., Murali,
Y.M., Varaprasad, K., Sreedhar, B. & Raju, K.M. 2008. First successful
design of semi-IPN hydrogel-silver nanocomposite: A facile approach for
antibacterial application. Journal of Colloid and Interface Science 318:
217-224.
Ngah, W.S.W., Kamari, A.
& Koay, Y.J. 2004. Equilibrium and kinetics studies of adsorption of copper
(II) on chitosan and chitosan PVA/beads. International Journal of Biological
Macromolecules 34: 155-161.
Rozana, A.B. 2001.
Tindak balas sebatian ferosenium dan pendopan ferosenium dalam filem PVC. Tesis
Sarjana. Bangi: Universiti Kebangsaan Malaysia (tidak diterbitkan).
Ummi, H.A., Bohari, M.Y.
& Azwan, M.L. 2012. Simple preparation of iron oxide nanoparticle by
degradation of ferrocenium tetrechloroferat in PNIPAM microgel system. Advanced
Material Research 56: 554-556.
Vimala, K., Samba, K.S.,
Murali, Y.M., Sreedhar, B. & Mohana, K.R. 2009. Controlled silver
nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and
carbohydrates: A rational methodology for antibacterial application. Carbohydrate
Polymers 75: 463-471.
Zhang, H., Zhong, H.,
Zhang, L., Chen, S., Zhao, Y. & Zhu, Y. 2009. Synthesis and
characterization of thermosensitive graft copolymer of N-isopropylacrylamide
with biodegradable carboxymethylchitosan. Carbohydrate Polymer 77:
785-790.
Zhao, L., Luo, F.,
Wasikiewwicz, J.M., Mitomo, H., Nagasawa, N. & Yagi, T. 2008. Adsorption of
humic acid from aqueous solution onto irradiation-crosslinked carboxymethyl. Bioresorce
Technology 99(6): 1911-1917.
*Pengarang
untuk surat-menyurat: azwanlazim@ukm.edu.my
|