Sains Malaysiana 48(9)(2019): 2021–2028

http://dx.doi.org/10.17576/jsm-2019-4809-23

 

A Study on the Atmospheric Dispersion of Radionuclide Released from TRIGA MARK II Reactor using Gaussian Plume Model

(Suatu Kajian Penyebaran Atmosfera pada Radionuklid Terbebas daripada Reaktor TRIGA MARK II menggunakan Model Gaussian Plum)

 

JEYLEENNY RANTY JANSON1*, SITI NUR AIN BINTI SULAIMAN1, SUHAIMI BIN KASSIM2, NUR SYAHIRAH BINTI MUSZAKHIR1, FAIZAL MOHAMED1, SYAZWANI MOHD FADZIL1 & KHOO KOK SIONG1

 

1Nuclear Technology Research Centre, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Reactor Technology Centre, Technical Support Division, Malaysia Nuclear Agency, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 8 April 2019/Diterima: 3 Julai 2019

 

ABSTRACT

TRIGA MARK II reactor is a research facility and site for neutron activation analysis. Should there be fuel rod damage for the first time, amongst its possible causes are human and environmental factor. Consequently, the study objectives were to determine types and released rates of radionuclides dispersed to air and deposited on land through core inventory using ORIGEN2 Code; to determine the concentrations of radionuclides released to air and deposited on land using Gaussian Plume Model; and to determine the exposure doses of radionuclides released to air and deposited on land using exposure dose equation. Core inventory identified types of radionuclides which were Br, I, Kr and Xe. The chosen radioisotopes of Br-83, I-131, Kr-85 and Xe-135 were based on its negative impact on human body system. The maximum released rate of Br-83 was 0.522×105 Bq/s; I-131 was 2.818×105 Bq/s; Kr-85 was 6.447×105 Bq/s and Xe-135 was 4.850×105 Bq/s, respectively. The maximum concentration in the atmosphere for Br-83 was 1.981 Bq/m3; I-131 was 0.062 Bq/m3; Kr-85 was 25.034 Bq/m3 and Xe-135 was 4.248 Bq/m3. The annual exposure doses for four selected radionuclides were 1326 μSv/yr (300 m), 119 μSv/yr (1000 m) and 7.463 μSv/yr (4000 m) for Category B, whereas for Category were 194 μSv/yr (300 m), 17.440 μSv/yr (1000 m) and 1.090 μSv/yr (4000 m), respectively. Conclusively, this study shows that in case of fuel rod damage on TRIGA MARK II reactor, radionuclide atmospheric dispersion at a distance of 300 m (Category B) was exceeding the standard annual exposure dose limit (1000 μSv/yr).

 

Keywords: Atmospheric dispersion; exposure dose; Gaussian Plume Model; TRIGA MARK II

 

ABSTRAK

Reaktor TRIGA MARK II merupakan sebuah insitut penyelidikan dan tempat untuk menjalankan analisis pengaktifan neutron. Sekiranya berlaku kerosakan rod bahan api buat pertama kalinya, antara sebab yang berkemungkinan adalah faktor manusia berserta persekitaran. Akibatnya objektif kajian adalah untuk menentukan jenis dan kadar pelepasan radionuklid yang tersebar ke udara dan mendap dalam tanah melalui inventori teras menggunakan Kod ORIGEN2; untuk menentukan kepekatan radionuklid terbebas ke udara dan mendap dalam tanah menggunakan Model Kepulan Gaussian; dan untuk menentukan dos dedahan radionuklid yang terbebas ke udara dan mendap dalam tanah menggunakan rumus dos dedahan. Inventori teras mengenal pasti jenis radionuklid yang terbebas berserta isotopnya iaitu adalah Br, I, Kr dan Xe. Radionuklid terpilih iaitu Br-83, I-131, Kr-85 dan Xe-135 adalah berdasarkan impak negatif terhadap sistem tubuh badan manusia. Kadar pelepasan maksimum masing-masing bagi Br-83 adalah 0.522×105 Bq/s; I-131 adalah 2.818×105 Bq/s; Kr-85 adalah 6.447×105 Bq/s dan Xe-135 adalah 4.850×105 Bq/s. Kepekatan maksimum di atmosfera bagi Br-83 adalah 1.981 Bq/m3; I-131 adalah 0.062 Bq/m3; Kr-85 adalah 25.034 Bq/m3 dan Xe-135 adalah 4.248 Bq/m3. Dos dedahan tahunan untuk empat radionuklid terpilih masing-masing adalah 1326 μSv/thn (300 m), 119 μSv/thn (1000 m) dan 7.463 μSv/thn (4000 m) bagi Kategori B manakala bagi Kategori D adalah 194 μSv/thn (300 m), 17.440 μSv/thn (1000 m) dan 1.090 μSv/thn (4000 m). Kesimpulannya, keputusan kajian menunjukkan sekiranya berlaku kerosakan rod bahan api pada reaktor TRIGA MARK II, penyebaran atmosfera oleh radionuklid pada jarak 300 m (Kategori B) adalah melebihi had dos dedahan piawai (1000 μSv/thn) yang dibenarkan.

 

Kata kunci: Dos dedahan; Model Kepulan Gaussian; penyebaran atmosfera; TRIGA MARK II

RUJUKAN

ARL. 2018. Pasquill stability classes. https://ready.arl.noaa.gov/ READYpgclass.php. Accessed on May 2018.

Bailey, D.T. & Touma, J.S. 1995. User's Guide for the Industrial Source Complex (ISC3) Dispersion Models. Volume II- Description of Model Algorithms. North Carolina. Environmental Protection Agency (EPA).

Benamrane, Y., Wybo, J. & Armand, P. 2013. Chernobyl and Fukushima nuclear accidents: What has changed in the use of atmospheric dispersion modeling? Journal of Environmental Radioactivity 126(1): 239-252.

Chambers, S.D., Wang, F., Williams, A.G., Xiaodong, D., Zhang, H., Lonati, G. & Crawford, J. 2015. Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor. Atmospheric Environment 107: 233-243.

Demange, D., Borisevich, O., Gramlich, N., Wagner, R. & Welte, S. 2013. Zeolite membranes and palladium membrane reactor for tritium extraction from the breeder blankets of ITER and DEMO. Fusion Engineering and Design 88(9- 10): 2396-2399.

Doi, T., Masumoto, K., Toyoda, A. & Tanaka, A. 2013. Anthropogenic radionuclides in the atmosphere observed at Tsukuba: Characteristics of the radionuclides derived from Fukushima. Journal of Environmental Radioactivity 122: 55-62.

Green, A.E.S., Singhal, R.P. & Venkateswar, R. 1980. Analytic extensions of the gaussian plume model. Journal of the Air Pollution Control Association 30(7): 773-776.

ICRP. 2006. Radiation Overview on External Eposure and Doses Calculation. International Commission on Radiological Protection, Publication 26/30, Argonne National Laboratory, USA.

Imanaka, T., Hayashi, G. & Endo, S. 2015. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1. Journal of Radiation Research 56: 56-61.

Long, N.Q., Truong, Y., Hien, P.D., Binh, N.T., Sieu, L.N., Giap, T.V. & Phan, N.T. 2012. Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam. Journal of Environmental Radioactivity 111: 53-58.

Malaysia Nuclear Agency. 2018. Education and training. http:// www.nuclearmalaysia.gov.my/malay/. Accessed on 11 May 2018.

Marzo, G.A. 2014. Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-chi accident and resulting effective dose. Atmospheric Environment 94: 709-722.

Muswema, J.L., Darko, E.O., Gbadago, J.K. & Boafo, E.K. 2014. Annals of nuclear energy atmospheric dispersion modeling and radiological safety analysis for a hypothetical accident of Ghana Research Reactor-1 (GHARR-1). Annals of Nuclear Energy 68: 239-246.

Nadia Hamid. 2018. Tempias Taufan Lan pada Malaysia. https:// www.bharian.com.my/berita/nasional/2017/10/340180/ panas-terik-kesan-tempias-taufan-lan. Accessed on 12 May 2018.

Ohnishi, T. 2012. The disaster at Japan's Fukushima-Daiichi nuclear power plant after the March 11, 2011 earthquake and tsunami, and the resulting spread of radioisotope contamination. Radiation Research 177: 1-14.

Potter, C.A. 2008. Human alimentary tract model for radiological protection. Health Physics 94(4): 373-375.

Preston, J.F. 2013. Overview of Level 3 PSA-Assessment of Off-site Consequences. International Atomic Energy Agency. 22-26 July 2013. PNRI Manila, Philippines.

Salame-Alfie, A. 2001. Assessing dose of the representative person for the purpose of radiation protection of the public and the optimization of the radiological protection: Broadening the process. In. Health Safety. ICRP Publication. p. 106.

Slade, H.D. 1968. Meteorology and atomic energy. National Technical Information Service, U.S Department of Commerce, Springfield, Virginia, U.S.

Šömen Joksić, A. & Katz, S.A. 2015. Chelation therapy for treatment of systemic intoxication with uranium: A review. Journal of Environmental Science and Health, Part A 50(14): 1479-1488.

Srinivas, C.V., Venkatesan, R., Baskaran, R., Rajagopal, V. & Venkatraman, B. 2012. Regional scale atmospheric dispersion simulation of accidental releases of radionuclides from Fukushima Dai-ichi reactor. Atmospheric Environment 61: 66-84.

Usang, M.D., Hamzah, N.S., Abi, M.J.B., Rawi, M.M.Z. & Abu, M.P. 2015. TRIGA MARK-II Source Term: AIP Conference Proceedings. Advancing Nuclear Research and Energy Development 1584: 45-49.

 

*Pengarang untuk surat-menyurat; email: jeyleennyrantyjanson@gmail.com

 

 

 

sebelumnya