Sains Malaysiana 48(9)(2019): 2021–2028
http://dx.doi.org/10.17576/jsm-2019-4809-23
A Study on the
Atmospheric Dispersion of Radionuclide Released from TRIGA MARK II Reactor
using Gaussian Plume Model
(Suatu
Kajian Penyebaran
Atmosfera pada Radionuklid Terbebas daripada Reaktor TRIGA
MARK II menggunakan Model
Gaussian Plum)
JEYLEENNY RANTY JANSON1*, SITI NUR AIN
BINTI SULAIMAN1, SUHAIMI BIN KASSIM2, NUR
SYAHIRAH BINTI MUSZAKHIR1, FAIZAL MOHAMED1, SYAZWANI MOHD FADZIL1 & KHOO KOK SIONG1
1Nuclear Technology
Research Centre, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Reactor Technology
Centre, Technical Support Division, Malaysia Nuclear Agency, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 8 April 2019/Diterima:
3 Julai 2019
ABSTRACT
TRIGA MARK II reactor is a research facility and site for neutron activation
analysis. Should there be fuel rod damage for the first time, amongst its
possible causes are human and environmental factor. Consequently, the study
objectives were to determine types and released rates of radionuclides
dispersed to air and deposited on land through core inventory using ORIGEN2
Code; to determine the concentrations of radionuclides released to air and
deposited on land using Gaussian Plume Model; and to determine the exposure
doses of radionuclides released to air and deposited on land using exposure
dose equation. Core inventory identified types of radionuclides which were Br,
I, Kr and Xe. The chosen radioisotopes of Br-83,
I-131, Kr-85 and Xe-135 were based on its negative impact on human body system.
The maximum released rate of Br-83 was 0.522×105 Bq/s; I-131 was 2.818×105 Bq/s; Kr-85 was 6.447×105 Bq/s and Xe-135 was 4.850×105 Bq/s, respectively. The maximum concentration in the
atmosphere for Br-83 was 1.981 Bq/m3;
I-131 was 0.062 Bq/m3;
Kr-85 was 25.034 Bq/m3 and
Xe-135 was 4.248 Bq/m3.
The annual exposure doses for four selected radionuclides were 1326 μSv/yr (300 m), 119 μSv/yr (1000 m) and 7.463 μSv/yr (4000 m) for Category
B, whereas for Category were 194 μSv/yr (300 m), 17.440 μSv/yr (1000 m) and 1.090 μSv/yr (4000 m), respectively. Conclusively, this study shows
that in case of fuel rod damage on TRIGA MARK II reactor,
radionuclide atmospheric dispersion at a distance of 300 m (Category B) was
exceeding the standard annual exposure dose limit (1000 μSv/yr).
Keywords: Atmospheric
dispersion; exposure dose; Gaussian Plume Model; TRIGA MARK II
ABSTRAK
Reaktor TRIGA MARK II merupakan sebuah insitut penyelidikan dan tempat untuk menjalankan analisis pengaktifan neutron. Sekiranya berlaku kerosakan rod bahan api buat pertama kalinya, antara sebab yang berkemungkinan adalah faktor manusia berserta persekitaran. Akibatnya objektif kajian adalah untuk menentukan jenis dan kadar pelepasan radionuklid yang tersebar ke udara dan mendap dalam tanah melalui inventori teras menggunakan Kod ORIGEN2; untuk menentukan kepekatan radionuklid terbebas ke udara dan mendap dalam tanah menggunakan Model Kepulan Gaussian; dan untuk menentukan dos dedahan radionuklid yang terbebas ke udara dan mendap dalam tanah menggunakan rumus dos dedahan. Inventori teras mengenal pasti jenis radionuklid yang terbebas berserta isotopnya iaitu adalah Br, I, Kr dan Xe. Radionuklid terpilih iaitu Br-83, I-131,
Kr-85 dan Xe-135 adalah berdasarkan impak negatif terhadap sistem tubuh badan manusia. Kadar pelepasan maksimum masing-masing bagi Br-83 adalah 0.522×105 Bq/s; I-131 adalah 2.818×105 Bq/s; Kr-85 adalah 6.447×105 Bq/s dan Xe-135 adalah 4.850×105 Bq/s. Kepekatan maksimum di atmosfera bagi Br-83 adalah 1.981 Bq/m3;
I-131 adalah 0.062 Bq/m3;
Kr-85 adalah 25.034 Bq/m3 dan Xe-135 adalah 4.248 Bq/m3. Dos dedahan tahunan untuk empat radionuklid terpilih masing-masing adalah 1326 μSv/thn (300 m), 119 μSv/thn (1000 m) dan 7.463 μSv/thn (4000 m) bagi Kategori B manakala bagi Kategori D adalah 194 μSv/thn (300 m), 17.440 μSv/thn (1000 m) dan 1.090 μSv/thn (4000 m). Kesimpulannya, keputusan kajian menunjukkan sekiranya berlaku kerosakan rod bahan api pada reaktor TRIGA
MARK II, penyebaran atmosfera oleh radionuklid pada jarak 300 m (Kategori B) adalah melebihi had dos dedahan piawai (1000 μSv/thn) yang dibenarkan.
Kata kunci: Dos dedahan;
Model Kepulan Gaussian; penyebaran atmosfera; TRIGA MARK II
RUJUKAN
ARL. 2018. Pasquill stability
classes. https://ready.arl.noaa.gov/ READYpgclass.php.
Accessed on May 2018.
Bailey, D.T. & Touma, J.S. 1995.
User's Guide for the Industrial Source Complex (ISC3) Dispersion
Models. Volume II- Description of Model Algorithms. North Carolina.
Environmental Protection Agency (EPA).
Benamrane, Y., Wybo, J. & Armand, P. 2013.
Chernobyl and Fukushima nuclear accidents: What has changed in the use of
atmospheric dispersion modeling? Journal of Environmental Radioactivity 126(1):
239-252.
Chambers, S.D., Wang, F., Williams, A.G., Xiaodong,
D., Zhang, H., Lonati, G. & Crawford, J. 2015.
Quantifying the influences of atmospheric stability on air pollution in
Lanzhou, China, using a radon-based stability monitor. Atmospheric
Environment 107: 233-243.
Demange, D., Borisevich, O., Gramlich, N., Wagner, R. & Welte,
S. 2013. Zeolite membranes and palladium membrane reactor for tritium
extraction from the breeder blankets of ITER and DEMO. Fusion Engineering
and Design 88(9- 10): 2396-2399.
Doi, T., Masumoto, K., Toyoda, A. & Tanaka, A. 2013.
Anthropogenic radionuclides in the atmosphere observed at Tsukuba:
Characteristics of the radionuclides derived from Fukushima. Journal of
Environmental Radioactivity 122: 55-62.
Green, A.E.S., Singhal, R.P. & Venkateswar, R. 1980. Analytic extensions of the gaussian plume model. Journal of the Air Pollution
Control Association 30(7): 773-776.
ICRP. 2006. Radiation Overview on External Eposure and Doses Calculation. International Commission on Radiological Protection,
Publication 26/30, Argonne National Laboratory, USA.
Imanaka, T., Hayashi, G. & Endo, S. 2015. Comparison of the accident
process, radioactivity release and ground contamination between Chernobyl and
Fukushima-1. Journal of Radiation Research 56: 56-61.
Long, N.Q., Truong, Y., Hien, P.D., Binh, N.T., Sieu, L.N., Giap, T.V. & Phan, N.T. 2012. Atmospheric radionuclides
from the Fukushima Dai-ichi nuclear reactor accident
observed in Vietnam. Journal of Environmental Radioactivity 111: 53-58.
Malaysia Nuclear Agency. 2018. Education and training. http://
www.nuclearmalaysia.gov.my/malay/. Accessed on 11 May 2018.
Marzo, G.A. 2014.
Atmospheric transport and deposition of radionuclides released after the
Fukushima Dai-chi accident and resulting effective dose. Atmospheric
Environment 94: 709-722.
Muswema, J.L., Darko, E.O., Gbadago, J.K. & Boafo, E.K. 2014. Annals of nuclear energy atmospheric
dispersion modeling and radiological safety analysis for a hypothetical
accident of Ghana Research Reactor-1 (GHARR-1). Annals of Nuclear Energy 68:
239-246.
Nadia Hamid. 2018. Tempias Taufan
Lan pada Malaysia. https:// www.bharian.com.my/berita/nasional/2017/10/340180/
panas-terik-kesan-tempias-taufan-lan.
Accessed on 12 May 2018.
Ohnishi, T. 2012. The disaster
at Japan's Fukushima-Daiichi nuclear power plant after the March
11, 2011 earthquake and tsunami, and the resulting spread of radioisotope
contamination. Radiation Research 177: 1-14.
Potter, C.A. 2008. Human
alimentary tract model for radiological protection. Health Physics 94(4):
373-375.
Preston, J.F. 2013. Overview
of Level 3 PSA-Assessment of Off-site Consequences. International Atomic
Energy Agency. 22-26 July 2013. PNRI Manila, Philippines.
Salame-Alfie, A. 2001.
Assessing dose of the representative person for the purpose of radiation
protection of the public and the optimization of the radiological protection:
Broadening the process. In. Health Safety. ICRP Publication. p. 106.
Slade, H.D. 1968. Meteorology
and atomic energy. National Technical Information Service, U.S Department of
Commerce, Springfield, Virginia, U.S.
Šömen Joksić,
A. & Katz, S.A. 2015. Chelation therapy for treatment of systemic
intoxication with uranium: A review. Journal of Environmental Science and
Health, Part A 50(14): 1479-1488.
Srinivas, C.V., Venkatesan, R., Baskaran, R., Rajagopal, V. & Venkatraman,
B. 2012. Regional scale atmospheric dispersion simulation of accidental
releases of radionuclides from Fukushima Dai-ichi reactor. Atmospheric Environment 61: 66-84.
Usang, M.D., Hamzah, N.S., Abi, M.J.B., Rawi,
M.M.Z. & Abu, M.P. 2015. TRIGA MARK-II Source Term: AIP Conference
Proceedings. Advancing Nuclear Research and Energy Development 1584:
45-49.
*Pengarang untuk surat-menyurat; email: jeyleennyrantyjanson@gmail.com
|