Sains Malaysiana 48(9)(2019): 2029–2039

http://dx.doi.org/10.17576/jsm-2019-4809-24

 

Atomistic Simulations of Nanoindentation Response of Irradiation Defects in Iron

(Simulasi Atomistik bagi Tindak Balas Pelekukan Nano bagi Kecacatan Penyinaran dalam Besi)

 

M. MUSTAFA AZEEM1, QINGYU WANG*1 & MUHAMMAD ZUBAIR2

 

1College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China

 

2Department of Nuclear Engineering, University of Sharjah, United Arab Emirates

 

Diserahkan: 25 Februari 2019/Diterima: 12 Julai 2019

 

ABSTRACT

Radiation response of a material is a consequence of defects' evolution in any radiation damage event. The radiation-induced defects can significantly alter the mechanical properties of a material. Radiation damage initiates from incident neutron by bombardment on solid material causing production and evolution of Frenkel defects. Since voids are formed due to aggregation of a large number of vacancies that cause dimensional changes and hence irradiation-induced swelling. In order to characterize the effect of irradiation defects, we have performed molecular dynamics (MD) simulations to investigate nanoindentation response of point defects and voids in Fe and their effects on mechanical parameters. The radial effect of voids and their interaction mechanism is also explored by nanoindentation simulation. It has been found that most of the dislocation produced are <111> and <100> during nanoindentation in all simulated models. There will be an increase in dislocation density which will harden the material and reduce its toughness. The mechanical parameters such as hardness H and reduced elastic modulus Er of irradiation defects are calculated from P-h curves. It is found that both H & Er of the point defects and voids are lower than the perfect model.

 

Keywords: Elastic modulus; hardness; irradiation defects; molecular dynamics simulations; nanoindentation

 

ABSTRAK

Tindak balas sinaran sesuatu bahan adalah kesan daripada evolusi kecacatan dalam kejadian kerosakan sinaran. Punca kecacatan aruhan sinaran dengan ketara boleh mengubah sifat mekanik bahan. Kecacatan sinaran yang dimulakan daripada kejadian neutron dengan pembedilan pada bahan pepejal menyebabkan pengeluaran dan evolusi kecacatan Frenkel. Lompang terbentuk kerana pengagregatan sebilangan besar kekosongan yang menyebabkan perubahan dimensi dan bengkak teraruh penyinaran. Untuk mencirikan kesan kecacatan penyinaran, simulasi molekul dinamik (MD) telah dijalankan untuk mengkaji tindak balas pelekukan nano kecacatan titik dan lompang pada Fe dan kesannya terhadap parameter mekanik. Kesan jejari lompang dan mekanisme interaksinya juga diterokai oleh simulasi pelekukan nano. Didapati bahawa kebanyakan kehelan yang dihasilkan adalah <111> dan <100> semasa pelekukan-nano dalam semua model simulasi. Terdapat peningkatan dalam ketumpatan perkehelan yang akan mengeraskan bahan dan mengurangkan keliatan. Parameter mekanik seperti kekerasan H dan pengurangan sinaran kecacatan modulus elastik Er akan dihitung bermula dari lengkung P-h. Didapati bahawa kedua-dua titik cacat dan lompang H & Er adalah lebih rendah berbanding model yang sempurna.

 

Kata kunci: Kecacatan sinaran; kekerasan; modulus elastik; pelekukan nano; simulasi molekul dinamik

RUJUKAN

Abu-shams Mohammad. & Ishraq Shabib. 2017. Effect of voids on nanoindentation response of Fe-10%Cr alloys using molecular dynamics simulation. Material Express 7(5): 329-340.

Ackland, G.J., Mendelev, M.I., Srolovitz, D.J., Han, S. & Barashev, A.V. 2004. Development of an interatomic potential for phosphorus impurities in α-Iron. Journal of Physics Condensed Matter 16(27). https://doi.org/10.1088/0953- 8984/16/27/003.

Azevedo, C.R.F. 2011. Selection of fuel cladding material for nuclear fission reactors. Engineering Failure Analysis 18(8): 1943-1962.

Bacon, D.J. & De Rubia, T.D. 1994. Molecular dynamics computer simulations of displacement cascades in metals. Journal of Nuclear Materials 216: 275-290.

Cheong, W.C.D. & Zhang, L.C. 2006. Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology 11(2000): 173-180.

Christopher, D., Smith, R. & Richter, A. 2001. Atomistic modelling of nanoindentation in iron and silver. Nanotechnology 12(3): 372-383.

Dalmau, R., Franke, O., Biener, M., Biener, J., Hodge, A. & Alcala, J. 2012. Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces. Physical Review Letters 075502(8): 17-21.

Du, X., Zhao, H., Zhang, L., Yang, Y., Xu, H., Fu, H. & Li, L. 2015. Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature. Scientific Reports 5(10): 16275.

García Ferré, F., Mairov, A., Ceseracciu, L., Serruys, Y., Trocellier, P., Baumier, C., Kaïtasov, O., Brescia, R., Gastaldi, D., Vena, P., Beghi, M.G., Beck, L., Sridharan, K. & Di Fonzo, F. 2016. Radiation endurance in Al2O3 nanoceramics. Scientific Reports 6(8): 33478.

Kilymis, D.A., Delaye, J.M. & Ispas, S. 2016. Nanoindentation of the pristine and irradiated forms of a sodium borosilicate glass: Insights from molecular dynamics simulations. Journal of Chemical Physics 145(4): 044505.

Kohnert, A.A., Wirth, B.D. & Capolungo, L. 2018. Modeling microstructural evolution in irradiated materials with cluster dynamics methods: A Review. Computational Materials Science 149: 442-459.

Lee, Y., Park, J.Y., Kim, S.Y., Jun, S. & Im, S. 2005. Atomistic simulations of incipient plasticity under Al(111) nanoindentation. Mechanics of Materials 37: 1035-1048.

Liu, X., Miao, Y., Li, M., Kirk, M.A., Maloy, S.A. & Stubbins, J.F. 2017. Ion-irradiation-induced microstructural Modi Fi cations in ferritic/martensitic steel T91. Journal of Nuclear Materials 490: 305-316.

Eldrup, M. & Singh, B.N. 2013. Cavity nucleation and growth during helium implantation and neutron irradiation of fe and steel cavity nucleation and growth during helium implantation and neutron irradiation of Fe and steel. Journal of Physics Conference Series 443: 012023.

Mazaheri Yousef, Ahmad Kermanpur. & Abbas Najafizadeh. 2015. Nanoindentation study of ferrite-martensite dual phase steels developed by a new thermomechanical processing. Materials Science and Engineering A 639: 8-14.

Nakai Ryosuke, Kiyohiro Yabuuchi, Shuhei Nogami. & Akira Hasegawa. 2016. The effect of voids on the hardening of body-centered cubic Fe. Journal of Nuclear Materials 471: 233-238.

Nordlund, K., Zinkle, S.J., Sand, A.E., Granberg, F., Averback, R.S., Stoller, R.E., Suzudo, T., Malerba, L., Banhart, F., Weber, W.J., Willaime, F., Dudarev, S.L. & Simeone, D. 2018. Primary radiation damage: A review of current understanding and models. Journal of Nuclear Materials 512: 450-479.

Pharr, G.M. 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 7(6): 1564-1583.

Plimpton, S. 1995. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics 117(1994): 1-19. https://doi.org/10.1006/jcph.1995.1039.

Renault, A., Gavoille, P., Malaplate, J., Pokor, C. & Tanguy, B. 2015. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of Type 304L and 316 stainless steels irradiated in the phénix reactor. Journal of Nuclear Materials 460: 72-81.

Richter, A., Gheewala Ismail, Smith, R., Kenny, S.D., Valdez, J. & Sickafus, K. 2008. Changes in the mechanical properties of irradiated MgO(100) crystals investigated by nanoindentation and computer simulation. Journal of Nuclear Materials 382(2-3): 176-183.

Rofman, O.V., Maksimkin, O.P., Tsay, K.V., Koyanbayev, Y.T. & Short, M.P. 2017. The natural aging of austenitic stainless steels irradiated with fast neutrons the natural aging of austenitic stainless steels irradiated with fast neutrons. Journal of Nuclear Materials 499(November): 284-293.

Ruestes, C.J. 2017. Atomistic studies of nanoindentation-A review of recent advances. Crystals 7(10): 293.

Shan, L.D.B., Yuan, L., Xu, Z.H. & Guo, B. 2009. Atomistic simulation of voids effect on nanoindentation. Journal of Nanoscience and Nanotechnology 9(2): 1234-1236.

Stukowski, A. 2010. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modelling and Simulation in Materials Science and Engineering 18(1): 15012.

Tan, C.M. & Jeng, Y.R. 2009. Computer simulations of nanoindentation on Cu (111) with a void. International Journal of Solids and Structures 46(9): 1884-1889.

Tan, L., Katoh, Y., Tavassoli, A.F., Henry, J., Rieth, M., Sakasegawa, H., Tanigawa, H. & Huang, Q. 2016. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service. Journal of Nuclear Materials 479: 515-523.

Terentyev, D., Bonny, G., Domain, C., Monnet, G. & Malerba, L. 2013. Mechanisms of radiation strengthening in Fe-Cr alloys as revealed by atomistic studies. Journal of Nuclear Materials 442(1-3): 470-485.

Tschopp, M.A., Gao, F., Yang, L. & Solanki, K.N. 2014. Binding energetics of substitutional and interstitial helium and Di-helium defects with grain boundary structure in α-Fe. Journal of Applied Physics 115(3): 033503.

Tschopp, M.A., Horstemeyer, M.F., Gao, F., Sun, X. & Khaleel, M. 2011. Energetic driving force for preferential binding of self-interstitial atoms to Fe grain boundaries over vacancies. Scripta Materialia 64(9): 908-911.

Uberuaga, B.P., Martínez, E., Perez, D. & Voter, A.F. 2018. Discovering mechanisms relevant for radiation damage evolution. Computational Materials Science 147: 282-292.

Voyiadjis, G.Z. & Mohammadreza Yaghoobi. 2015. Large scale atomistic simulation of size effects during nanoindentation: Dislocation length and hardness. Materials Science and Engineering A 634: 20-31.

Was, G.S. 2007. Fundamentals of Radiation Materials Science: Metals and Alloys. Berlin: Springer-Verlag.

Wolfer, W.G. 2012. Fundamental properties of defects in metals. In Comprehensive Nuclear Materials. https://doi. org/10.1016/B978-0-08-056033-5.00001-X.

Yabuuchi, K., Kasada, R. & Kimura, A. 2013. Effect of alloying elements on irradiation hardening behavior and microstructure evolution in BCC Fe. Journal of Nuclear Materials 442(1-3): 790-795.

Yvon, P. & Carré, F. 2009. Structural materials challenges for advanced reactor systems. Journal of Nuclear Materials 385(2): 217-222.

Zhan, H.F., Gu, Y.T. & Yarlagadda, P.K.D.V. 2011. Advanced numerical characterization of mono- crystalline copper with defects. Advanced Science Letters 4(5): 1293-1301.

Zhang, X., Hattar, K., Chen, Y., Shao, L., Li, J., Sun, C., Yu, K., Nan, L., Mitra, T., Wang, H., Wang, J. & Michael, N. 2018. Radiation damage in nanostructured materials. Progress in Materials Science 96: 217-321.

Zinkle, S.J. & Was, G.S. 2013. Materials challenges in nuclear energy. Acta Materialia 61(3): 735-758.

 

*Pengarang untuk surat-menyurat; email: wangqingyu@hrbeu.edu.cn

 

 

 

sebelumnya