Sains Malaysiana 49(11)(2020): 2821-2832
http://dx.doi.org/10.17576/jsm-2020-4911-21
First-Principles
Study of Structural, Electronic and Thermoelectric Properties of Ni-Doped Bi2Se3
(Kajian Prinsip Pertama tentang Sifat Struktur, Elektronik dan Termoelektrik bagi Bi2Se3 Ni-Terdop)
MUHAMMAD
ZAMIR MOHYEDIN1,2, MOHAMAD FARIZ MOHAMAD TAIB1,2*, AFIQ
RADZWAN3, MASNAWI MUSTAFFA1, AMIRUDDIN SHAARI3,
BAKHTIAR UL-HAQ4, OSKAR HASDINOR HASSAN1,5 & MUHD ZU
AZHAN YAHYA6
1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450
Shah Alam, Selangor Darul Ehsan, Malaysia
2Ionic, Materials and Devices (iMADE) Research Laboratory, Institute of Science, Universiti Teknologi MARA, 40450
Shah Alam, Selangor Darul Ehsan, Malaysia
3Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia
4Advanced Functional Materials &
Optoelectronic Laboratory (AFMOL)
Faculty
of Science, King Khalid University, 9004 Abha, Saudi
Arabia
5Faculty of Art & Design, Universiti Teknologi MARA, 40450
Shah Alam, Selangor Darul Ehsan, Malaysia
6Faculty of Defence Science & Technology, Universiti Pertahanan Nasional Malaysia, 57100 Kuala Lumpur, Federal
Territory, Malaysia
Diserahkan: 10 April 2020/Diterima: 20 Mei 2020
ABSTRACT
Direct conversion of waste heat to
electrical energy could address present energy challenges. Bi2Se3 is one of few thermoelectric materials known to operate at room temperature.
Comprehensive analysis using density functional theory was conducted to explore
the effect of nickel doping on structural, electronic, and thermoelectric
properties of Bi2Se3. Local density approximation (LDA)
was used with an addition of spin-orbit coupling (SOC) and van der
Waals interaction scheme consideration.
Analysis of the effect of SOC was elaborated. It was found that nickel has
changed the crystal structure of Bi2Se3. Nickel has also
changed band structure and density of state that alter the thermoelectric
performance. The decreased band gap has decreased the thermopower. However, it
gives advantages to the improvement of electrical conductivity. Higher
electrical conductivity has risen thermal conductivity. Despite the decreased
thermopower and increased thermal conductivity, the higher electrical
conductivity has improved the overall thermoelectric performance of Bi2Se3 when nickel is introduced.
Keywords: Density functional theory; electrical conductivity; electronic
properties; spin-orbit coupling; thermoelectricity
ABSTRAK
Penukaran sisa haba kepada tenaga elektrik dapat menangani cabaran tenaga yang ada pada masa ini. Bi2Se3 adalah salah satu daripada beberapa bahan termoelektrik yang diketahui mampu beroperasi pada suhu bilik. Analisis komprehensif menggunakan teori ketumpatan berfungsi telah dijalankan untuk meneroka kesan pendopan nikel pada sifat struktur, elektronik dan termoelektrik Bi2Se3. Penghampiran ketumpatan setempat (PKS) digunakan dengan mempertimbangkan penambahan gandingan spin-petala (GSP) dan skema interaksivan der Waals. Analisis kesan GSP dijelaskan. Didapati bahawa nikel telah mengubah struktur kristal Bi2Se3. Nikel juga telah menukar struktur jalur dan ketumpatan keadaan yang mengubah prestasi termoelektrik. Penurunan jurang jalur telah menurunkan termokuasa. Walau bagaimanapun, ia memberi kelebihan kepada peningkatan kekonduksian elektrik. Kekonduksian elektrik yang tinggi telah meningkatkan kekonduksian terma. Walaupun termokuasa menurun dan kekonduksian terma meningkat, kekonduksian elektrik yang lebih tinggi telah meningkatkan prestasi termoelektrik keseluruhan Bi2Se3 apabila nikel diperkenalkan.
Kata kunci: Gandingan spin-petala; kekonduksian elektrik; sifat elektronik; teori ketumpatan berfungsi; termoelektrik
RUJUKAN
Adam, A.M., Elshafaie, A., Mohamed,
A.E.A., Petkov, P. & Ibrahim, E.M.M. 2018. Thermoelectric properties of Te
doped bulk Bi2Se3 system. Materials Research Express 5(3): 035514.
Aguilera,
I., Friedrich, C., Bihlmayer, G. & Blügel, S. 2013. GW study of topological
insulators Bi2Se3, Bi2Te3, and Sb2Te3:
Beyond the perturbative one-shot approach. Physical
Review B 88(4): 045206-1-045206-7.
Ali,
Z., Butt, S., Cao, C., Butt, F.K., Tahir, M., Tanveer, M., Aslam, I., Rizwan,
M., Idrees, F. & Khalid, S. 2014. Thermochemically evolved nanoplatelets of
bismuth selenide with enhanced thermoelectric figure of merit. AIP Advances 4(11): 117129-1-117129-8.
Augustine,
S., Ravi, J., Ampili, S., Rasheed, T.M.A., Nair, K.P.R., Endo, T. & Mathai,
E. 2003. Effect of Te doping and electron irradiation on thermal diffusivity of
Bi2Se3 thin films by photo-thermal technique. Journal of Physics D: Applied Physics 36(8):
994-1000.
Bashir,
M.B.A., Said, S.M., Sabri, M.F.M., Miyazaki, Y., Shnawah, D.A.A., Shimada, M.
& Elsheikh, M.H. 2018. Enhancement of thermoelectric properties of Yb0.25Co4Sb12 skutterudites through Ni substitution. Sains
Malaysiana 47(1): 181-187.
Bejan,
A. & Kraus, A.D. 2003. Heat Transfer
Handbook. Vol. 1. New York: John Wiley & Sons.
Blaha,
P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D. & Luitz, J. 2001. Computer
code WIEN2K. Austria: Vienna University of Technology.
Boledzyuk,
V.B., Kovalyuk, Z.D., Kudrinskii, Z.R. & Shevchenko, A.D. 2015. Structural
characteristics and magnetic properties of cobalt-intercalated A25 B36 single crystals. Technical Physics 60(11):
1658-1662.
Cermak,
P., Ruleová, P., Holy, V., Prokleska, J., Kucek, V., Pálka, K., Benes, L. &
Drasar, C. 2018. Thermoelectric and magnetic properties of Cr-doped single
crystal Bi2Se3–search for energy filtering. Journal of Solid State Chemistry 258:
768-775.
Chang,
C., Xiao, Y., Zhang, X., Pei, Y., Li, F., Ma, S., Yuan, B., Liu, Y., Gong, S.
& Zhao, L.D. 2016. High performance thermoelectrics from earth-abundant
materials: Enhanced figure of merit in PbS through nanostructuring grain
size. Journal of Alloys and Compounds 664: 411-416.
Chis,
V., Sklyadneva, I.Y., Kokh, K.A., Volodin, V.A., Tereshchenko, O.E. &
Chulkov, E.V. 2012. Vibrations in binary and ternary topological insulators:
first-principles calculations and raman spectroscopy measurements. Physical Review B 86(17): 174304.
Dresselhaus,
G. 1955. Spin-orbit coupling effects in zinc blende structures. Physical Review 100(2): 580-586.
Dun,
C., Hewitt, C.A., Huang, H., Xu, J., Montgomery, D.S., Nie, W., Jiang, Q. &
Carroll, D.L. 2015. Layered Bi2Se3 nanoplate/polyvinylidene fluoride composite based n-type thermoelectric
fabrics. ACS Applied Materials & Interfaces 7(13): 7054-7059.
Feng,
B., Li, Q., Hou, Y., Zhang, C., Jiang, C., Hu, J., Xiang, Q., Li, Y., He, Z. & Fan, X. 2017. Enhanced thermoelectric
properties of Sb-doped BiCuSeO due to decreased band gap. Journal
of Alloys and Compounds 712: 386-393.
Hagmann,
J.A., Li, X., Chowdhury, S., Dong, S.N., Rouvimov, S., Pookpanratana, S.J., Yu,
K.M., Orlova, T.A., Bolin, T.B., Segre, C.U., Seiler, D.G., Richter, C.A., Liu,
X., Dobrowolska, M. & Furdyna, J.K. 2017. Molecular beam epitaxy growth and
structure of self-assembled Bi2Se3/Bi2MnSe4 multilayer heterostructures. New Journal
of Physics 19(8): 085002.
Han,
C., Li, Z. & Dou, S. 2014. Recent progress in thermoelectric materials. Chinese Science Bulletin 59(18):
2073-2091.
Hasan,
S.W., Said, S.M., Abu Bakar, A.S., Jaffery, H.A. & Sabri, M.F.M. 2018. The
role of electrolyte fluidity on the power generation characteristics of
thermally driven electrochemical cells. Sains
Malaysiana 47(2): 403-408.
Hor,
Y.S., Richardella, A., Roushan, P., Xia, Y., Checkelsky, J.G., Yazdani, A.,
Hasan, M.Z., Ong, N.P. & Cava, R.J. 2009. p-type Bi2Se3 for topological insulator and
low-temperature thermoelectric applications. Physical Review B 79(19): 195208.
Janíček,
P., Drašar, C., Beneš, L. & Lošťák, P. 2009. Thermoelectric properties
of Tl‐doped Bi2Se3 single crystals. Crystal Research and Technology 44(5):
505-510.
Kadel,
K., Kumari, L., Li, W.Z., Huang, J.Y. & Provencio, P.P. 2011. Synthesis and
thermoelectric properties of Bi2Se3 nanostructures. Nanoscale Research Letters 6(1): 57.
Kang, Y., Zhang, Q., Fan, C., Hu,
W., Chen, C., Zhang, L., Yu, F., Tian, Y. & Xu, B. 2017. High pressure
synthesis and thermoelectric properties of polycrystalline Bi2Se3. Journal of Alloys and Compounds 700:
223-227.
Kulbachinskii,
V.A., Kytin, V.G., Kudryashov, A.A & Tarasov, P.M. 2012. Thermoelectric
properties of Bi2Te3, Sb2Te3 and Bi2Se3 single crystals with magnetic impurities. Journal of Solid State Chemistry 193: 47-52.
Kulsi,
C., Kargupta, K. & Banerjee, D. 2017. Effect of nickel doping on
thermoelectric properties of bismuth selenide. In AIP Conference Proceedings.
Lawal,
A. & Shaari, A. 2017. Density functional theory study of electronic
properties of Bi2Se3 and Bi2Te3. Malaysian Journal of Fundamental and Applied
Sciences 12(3): 99-101.
Lee,
M.S. & Mahanti, S.D. 2012. Validity of the rigid band approximation in the
study of the thermopower of narrow band gap semiconductors. Physical Review B 85(16): 165149.
Lin,
H., Das, T., Okada, Y., Boyer, M.C., Wise, W.D., Tomasik, M., Zhen, B., Hudson,
E.W., Zhou, W., Madhavan, V., Ren, C.Y., Ikuta, H. & Bansil, A. 2013.
Topological dangling bonds with large spin splitting and enhanced spin
polarization on the surfaces of Bi2Se3. Nano
Letters 13(5): 1915-1919.
Lind,
H., Lidin, S. & Häussermann, U. 2005. Structure and bonding properties of
(Bi2Se3)m(Bi2)n stacks
by first-principles density functional theory. Physical Review B 72(18):
184101.
Madsen,
G.K.H. & Singh, D.J. 2006. BoltzTraP. A code for calculating band-structure
dependent quantities. Computer Physics
Communications 175(1): 67-71.
Martinez,
G., Piot, B.A., Hakl, M., Potemski, M., Hor, Y.S., Materna, A., Strzelecka,
S.G., Hruban, A., Caha, O., Novak, J., Dubroka, A., Drasar, C. & Orlita, M.
2017. Determination of the energy band gap of Bi2Se3. Scientific Reports 7(1): 6891.
Min,
Y., Park, G., Kim, B., Giri, A., Zeng, J., Roh, J.W., Kim, S.I., Lee, K.H.
& Jeong, U. 2015. Synthesis of multishell nanoplates by consecutive
epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 9(7): 6843-6853.
Min,
Y., Roh, J.W., Yang, H., Park, M., Kim, S.I., Hwang, S., Lee, S.M., Lee, K.H.
& Jeong, U. 2013. Surfactant‐free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric
properties of their nanocomposites. Advanced
Materials 25(10): 1425-1429.
Mirhosseini,
H. & Henk, J. 2012. Spin texture and circular dichroism in photoelectron
spectroscopy from the topological insulator Bi2Te3: First-principles
photoemission calculations. Physical
Review Letters 109(3): 036803.
Mishra,
S.K., Satpathy, S. & Jepsen, O. 1997. Electronic structure and
thermoelectric properties of bismuth telluride and bismuth selenide. Journal of Physics: Condensed Matter 9(2): 461-470.
Nakajima,
S. 1963. The crystal structure of Bi2Te3− xSex. Journal of Physics and Chemistry of Solids 24(3): 479-485.
Novoselov,
K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan,
J.C., Boebinger, G.S., Kim, P. & Geim, A.K. 2007. Room-temperature quantum
Hall effect in graphene. Science 315(5817): 1379.
Park,
K.H., Mohamed, M., Aksamija, Z. & Ravaioli, U. 2015. Phonon scattering due
to van der Waals forces in the lattice thermal conductivity of Bi2Te3 thin films. Journal of Applied Physics 117(1): 015103.
Parker,
D. & Singh, D.J. 2011. Potential thermoelectric performance from
optimization of hole-doped Bi2Se3. Physical Review X 1(2): 021005.
Perdew,
J.P. & Zunger, A. 1981. Self-interaction correction to density-functional
approximations for many-electron systems. Physical
Review B 23(10): 5048-5079.
Richards,
W.G., Trivedi, H.P. & Cooper, D.L. 1981. Spin-Orbit Coupling in Molecules. Oxford: Oxford University Press.
Saeed,
Y., Singh, N. & Schwingenschlögl, U. 2014a. Enhanced thermoelectric figure
of merit in strained Tl-doped Bi2Se3. Applied Physics Letters 105(3):
031915-031915-4.
Saeed,
Y., Singh, N. & Schwingenschlögl, U. 2014b. Thickness and strain effects on
the thermoelectric transport in nanostructured Bi2Se3. Applied Physics Letters 104(3): 033105.
Saji,
A., Ampili, S., Yang, S.H., Ku, K.J. & Elizabeth, M. 2005. Effects of
doping, electron irradiation, H+ and He+ implantation on
the thermoelectric properties of Bi2Se3 single crystals. Journal of Physics: Condensed Matter 17(19): 2873.
Shi,
H., Parker, D., Du, M.H. & Singh, D.J. 2015. Connecting thermoelectric
performance and topological-insulator behavior: Bi2Te3 and Bi2Te2 Se from first principles. Physical Review Applied 3(1): 014004.
Sun,
G.L., Li, L.L., Qin, X.Y., Li, D., Zou, T.H., Xin, H.X., Ren, B.J., Zhang, J.,
Li, Y.Y. & Li, X.J. 2015a. Enhanced thermoelectric performance of
nanostructured topological insulator Bi2Se3. Applied Physics Letters 106(5): 053102.
Sun,
G., Qin, X., Li, D., Zhang, J., Ren, B., Zou, T., Xin, H., Paschen, S.B. &
Yan, X. 2015b. Enhanced thermoelectric performance of n-type Bi2Se3 doped with
Cu. Journal of Alloys and Compounds 639: 9-14.
Sun,
Y., Cheng, H., Gao, S., Liu, Q., Sun, Z., Xiao, C., Wu, C., Wei, S. & Xie,
Y. 2012. Atomically thick bismuth selenide freestanding single layers achieving
enhanced thermoelectric energy harvesting. Journal
of the American Chemical Society 134(50): 20294-20297.
Tan,
G., Shi, F., Hao, S., Chi, H., Zhao, L.D., Uher, C., Wolverton, C., Dravid,
V.P. & Kanatzidis, M.G. 2015. Codoping in SnTe: Enhancement of
thermoelectric performance through synergy of resonance levels and band
convergence. Journal of the American Chemical Society 137(15): 5100-5112.
Tan,
Q., Zhao, L.D., Li, J.F., Wu, C.F., Wei, T.R., Xing, Z.B. & Kanatzidis,
M.G. 2014. Thermoelectrics with earth abundant elements: Low thermal
conductivity and high thermopower in doped SnS. Journal of Materials Chemistry A 2(41): 17302-17306.
Urkude,
R.R., Sagdeo, A., Rawat, R., Choudhary, R.J., Asokan, K., Ojha, S. &
Palikundwar, U.A. 2018. Observation of Kondo behavior in the single crystals of
Mn-doped Bi2Se3 topological insulator. AIP
Advances 8(4): 045315.
Valla,
T., Pan, Z.H., Gardner, D., Lee, Y.S. & Chu, S. 2012. Photoemission
spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator. Physical Review Letters 108(11): 117601.
Wang,
B.T., Souvatzis, P., Eriksson, O. & Zhang, P. 2015. Lattice dynamics and chemical
bonding in Sb2Te3 from first-principles calculations. The Journal of Chemical Physics 142(17):
174702.
Wang,
B.T. & Zhang, P. 2012. Phonon spectrum and bonding properties of Bi2Se3:
Role of strong spin-orbit interaction. Applied
Physics Letters 100(8): 082109.
Xu,
N., Xu, Y. & Zhu, J. 2017. Topological insulators for thermoelectrics. npj Quantum Materials 2(1): 51.
*Pengarang untuk surat-menyurat; email: mfariz@uitm.edu.my
|