Sains Malaysiana 49(11)(2020): 2833-2846
http://dx.doi.org/10.17576/jsm-2020-4911-22
Stability
Analysis of Radiotherapy Cancer Treatment Model with Fractional Derivative
(Analisis
Kestabilan Model Rawatan Radioterapi Kanser dengan Terbitan Pecahan)
MUSILIU
FOLARIN FARAYOLA, SHARIDAN SHAFIE* & FUAADA MOHD SIAM
Department of Mathematical Sciences, Faculty of Science, Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia
Diserahkan: 27 Januari 2020/Diterima: 9 Jun 2020
ABSTRACT
This
paper presents the condition for uniqueness, the stability analysis, and the
bifurcation analysis of a mathematical model that simulates a radiotherapy
cancer treatment process. The presented model was the previous cancer treatment
model integrated with the Caputo fractional derivative and the Linear-Quadratic
with the repopulation model. The metric space analysis was used to establish
the conditions for the presence of unique fixed points for the model, which
indicated the presence of unique solutions. After establishing uniqueness, the
model was used to simulate the fractionated treatment process of six cancer
patients treated with radiotherapy. The simulations of the cancer treatment
process were done in MATLAB with numerical and radiation parameters. The
numerical parameters were obtained from previous literature and the radiation
parameters were obtained from reported clinical data. The solutions of the
simulations represented the final volumes of tumors and normal cells.
Subsequently, the initial values of the model were varied with 200 different
values for each patient and the corresponding solutions were recorded. The
continuity of the solutions was used to investigate the stability of the
solutions with respect to initial values. In addition, the value of the Caputo
fractional derivative was chosen as the bifurcation parameter. This parameter
was varied with 500 different values to determine the bifurcation values. It
was concluded that the solutions are unique and stable, hence the model is
well-posed. Therefore, it can be used to simulate a cancer treatment process as
well as to predict outcomes of other radiation protocols.
Keywords: Caputo fractional derivative;
Linear-Quadratic; radiotherapy
ABSTRAK
Kertas
ini membentangkan syarat keunikan, analisis kestabilan, dan analisis bifurkasi
terhadap model matematik bagi simulasi proses rawatan kanser radioterapi. Model
yang digunakan adalah model rawatan kanser terdahulu yang disepadukan dengan
terbitan pecahan Caputo dan Kuadratik-Linear dengan model populasi semula.
Analisis ruang metrik digunakan untuk menentukan syarat-syarat kehadiran titik
tetap unik untuk model, yang menunjukkan kehadiran penyelesaian unik. Setelah
keunikan ditentukan, model ini digunakan bagi simulasi proses rawatan berbahagi
terhadap enam pesakit kanser yang dirawat dengan radioterapi. Simulasi proses
rawatan kanser dilakukan dalam MATLAB dengan parameter berangka dan parameter
radiasi. Parameter berangka diperoleh daripada kajian sebelumnya dan parameter
radiasi diperoleh daripada data klinikal yang dilaporkan. Penyelesaian simulasi
mewakili isi padu tumor terakhir dan sel normal. Selanjutnya, nilai-nilai awal
model telah dipelbagaikan dengan 200 nilai yang berbeza untuk setiap pesakit
dan penyelesaian yang berpadanan direkodkan. Keselanjaran penyelesaian telah
digunakan untuk mengkaji kestabilan penyelesaian terhadap nilai-nilai awal.
Selain itu, nilai terbitan pecahan Caputo dipilih sebagai parameter bifurkasi.
Parameter ini dipelbagaikan dengan 500 nilai yang berbeza untuk menentukan
nilai-nilai bifurkasi. Didapati bahawa, penyelesaian adalah unik dan stabil,
maka model adalah teraju rapi. Oleh itu, model boleh digunakan bagi simulasi
proses rawatan kanser serta meramalkan hasil keputusan protokol radiasi yang
lain.
Kata kunci: Kuadratik-Linear;
radioterapi; terbitan pecahan Caputo
RUJUKAN
Abuasad, S. & Hashim, I. 2018. Homotopy
decomposition method for solving higher-order time- fractional diffusion
equation via modified beta derivative. Sains
Malaysiana 47(11): 2899-2905.
Awadalla, M., Yameni, Y. & Abuassba, K. 2019. A
new fractional model for the cancer treatment by radiotherapy using the
Hadamard fractional derivative. Online Mathematics 1(2): 14-18.
Barnett, G.C., West, C.M.L., Dunning, A.M., Elliott, R.M.,
Coles, C.E., Pharoah, P.D.P. & Burnet, N.G. 2009. Normal tissue reactions
to radiotherapy: Towards tailoring treatment dose by genotype. Nature
Reviews Cancer 9(2): 134-142.
Belfatto, A., Riboldi, M., Ciardo, D., Cattani, F.,
Cecconi, A., Lazzari, R., Jereczek-Fossa, B.A., Orecchia, R., Baroni, G. &
Cerveri, P. 2016. Kinetic models for predicting cervical cancer response to
radiation therapy on individual basis using tumor regression measured in vivo with volumetric imaging. Technology
in Cancer Research & Treatment 15(1): 146-158.
Belostotski, G. & Freedman, H.I. 2005. A control
theory model for cancer treatment by radiotherapy. International Journal of
Pure and Applied Mathematics 25: 447-480.
Benzekry, S., Lamont, C., Beheshti, A., Tracz, A.,
Ebos, J.M.L., Hlatky, L. & Hahnfeldt, P. 2014. Classical mathematical
models for description and prediction of experimental tumor growth. PloS
Computational Biology 10(8): e1003800.
Bertuzzi, A., Bruni, C., Papa, F. & Sinisgalli, C.
2013. Optimal solution for a cancer radiotherapy problem. Journal of
Mathematical Biology 66(1-2): 311-349.
Borisut, P., Khammahawong, K. & Kumam, P. 2018.
Fixed point theory approach to existence of solutions with differential
equations. Differential Equations 1:
1-34.
Caputo, M. & Fabrizio, M. 2015. A new definition
of fractional derivative without singular kernel. Progress in Fractional
Differentiation and Applications 1(2): 1-13.
Diethelm, K. 2003. Efficient solution of multi-term
fractional differential equations using P(EC)mE methods. Computing 71(4): 305-319.
Diethelm, K. & Freed, A.D. 1998. The FracPECE
subroutine for the numerical solution of differential equations of fractional
order. Forschung und wissenschaftliches Rechnen 1999: 57-71.
Diethelm, K., Ford, N.J. & Freed, A.D. 2004.
Detailed error analysis for a fractional Adams method. Numerical Algorithms 36(1): 31-52.
Dokuyucu, A.M., Celik, E., Bulut, H. & Mehmet
Baskonus, H. 2018. Cancer treatment model with the Caputo-Fabrizio fractional
derivative. The European Physical
Journal Plus 133(3): 92.
Du, M., Wang, Z. & Hu, H. 2013. Measuring memory
with the order of fractional derivative. Scientific Reports 3: 3431.
Emami, B. 2013. Tolerance of normal tissue to
therapeutic radiation. Reports of Radiotherapy and Oncology 1(1): 35-48.
Farayola, M.F., Shafie, S., Mohd Siam, F. & Khan,
I. 2020a. Mathematical modeling of radiotherapy cancer treatment using Caputo
fractional derivative. Computer Methods and Programs in Biomedicine 188:
105306.
Farayola, M.F., Shafie, S., Mohd Siam, F. & Khan,
I. 2020b. Numerical simulation of normal and cancer cells’ populations with
fractional derivative under radiotherapy. Computer Methods and Programs in
Biomedicine 187: 105202.
Fowler, J.F. 2006. Development of radiobiology for
oncology - A personal view. Physics in Medicine and Biology. 51(13):
R263-R286.
Freedman, H.I. & Belostotski, G. 2009. Perturbed
models for cancer treatment by radiotherapy. Differential Equations and
Dynamical Systems 17(1-2): 115-133.
Garrappa, R. 2010. On linear stability of
predictor-corrector algorithms for fractional differential equations. International
Journal of Computer Mathematics 87(10): 2281-2290.
Hairer, E., Lubich, Ch. & Schlichte, M. 1985. Fast
numerical solution of nonlinear Volterra convolution equations. SIAM Journal
on Science and Statistical Computing 6(3): 532-541.
Jones, B. 1999. Mathematical models of tumour and
normal tissue response. Acta Oncologica 38(7): 883-893.
Khalid, A.F.B., Tan, J.J. & Yong, Y.K. 2018.
Malaysian Tualang honey and its potential anti-cancer properties: A review. Sains Malaysiana 47(11): 2705-2711.
Lee, S.P., Leu, M.Y., Smathers, J.B., McBride, W.H.,
Parker, R.G. & Withers, H.R. 1995. Biologically effective dose distribution
based on the linear quadratic model and its clinical relevance. International
Journal of Radiation Oncology, Biology, Physics 33(2): 375-389.
Liu, Z. & Yang, C. 2014. A mathematical model of
cancer treatment by radiotherapy. Computational and Mathematical Methods in
Medicine 2014: Article ID. 172923.
Lokman, N., Ab. Hamid, S.A. & Bachok, N. 2017.
Survival study and prognostic factors of ovarian cancer registered in a
teaching hospital in Malaysia. Sains
Malaysiana 46(4): 559-565.
Losada, J. & Nieto, J.J. 2015. Properties of a new
fractional derivative without singular kernel. Progress
in Fractional Differentiation and Applications 1(2): 87-92.
Nawrocki, S. & Zubik-Kowal, B. 2015. Clinical
study and numerical simulation of brain cancer dynamics under radiotherapy. Communications
in Nonlinear Science and Numerical Simulation 22(1-3): 564-573.
O’Rourke, S.F.C., McAneney, H. & Hillen, T. 2009.
Linear quadratic and tumour control probability modelling in external beam
radiotherapy. Journal of Mathematical Biology 58(4-5): 799-817.
Rashid, H., Mohd Siam, F. & Maan, N. 2018.
Parameter estimation for a model of ionizing radiation effects on targeted
cells using genetic algorithm and pattern search method. Matematika 34(3): 1-13.
Wheeler, N. 1997. Construction and physical
application of the fractional calculus. Reeds College Physics Seminar.
Reeds College Physics Seminar.
*Pengarang untuk
surat-menyurat; email: sharidan@utm.my
|