Sains Malaysiana 49(1)(2020): 211-222

http://dx.doi.org/10.17576/jsm-2020-4901-25

 

Thermal Marangoni Flow Past a Permeable Stretching/Shrinking Sheet in a Hybrid Cu-Al2O3/Water Nanofluid

(Aliran Haba Marangoni terhadap Permukaan Telap Meregang/Mengecutdalam Nanobendalir Hibrid Cu-Al2O3/Air)

 

NAJIYAH SAFWA KHASHI'IE1,2, NORIHAN MD ARIFIN*1,3, IOAN POP4, ROSLINDA NAZAR5, EZAD HAFIDZ HAFIDZUDDIN6 & NADIHAH WAHI3

 

1Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

 

3Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

4Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania

 

5Pusat Pengajian Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

6Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 17 Jun 2019/Diterima: 18 Oktober 2019

 

ABSTRACT

The present study accentuates the Marangoni convection flow and heat transfer characteristics of a hybrid Cu-Al2O3/water nanofluid past a stretching/shrinking sheet. The presence of surface tension due to an imposed temperature gradient at the wall surface induces the thermal Marangoni convection. A suitable transformation is employed to convert the boundary layer flow and energy equations into a nonlinear set of ordinary (similarity) differential equations. The bvp4c solver in MATLAB software is utilized to solve the transformed system. The change in velocity and temperature, as well as the Nusselt number with the accretion of the dimensionless Marangoni, nanoparticles volume fraction and suction parameters, are discussed and manifested in the graph forms. The presence of two solutions for both stretching and shrinking flow cases are noticeable with the imposition of wall mass suction parameter. The adoption of stability analysis proves that the first solution is the real solution. Meanwhile, the heat transfer rate significantly augments with an upsurge of the Cu volume fraction (shrinking flow case) and Marangoni parameter (stretching flow case). Both Marangoni and Cu volume fraction parameters also can decelerate the boundary layer separation process.

 

Keywords: Dual solutions; hybrid nanofluid; Marangoni convection; stability analysis; suction

 

ABSTRAK

Kajian ini menonjolkan aliran perolakan Marangoni dan ciri-ciri pemindahan haba untuk nanobendalir hibrid Cu-Al2O3/air terhadap permukaan meregang/mengecut. Kehadiran ketegangan permukaan disebabkan oleh perbezaan suhu yang dikenakanpada permukaan dinding telah menghasilkan perolakan haba Marangoni. Satu transformasi bersesuaian digunakan untuk menukar persamaan aliran lapisan sempadan dan tenaga ke dalam persamaan pembezaan biasa bukan linear. Fungsi bvp4c dalam perisian Matlab telah digunakan untuk menyelesaikan sistem yang diubah. Perubahan dalam halaju dan suhu, serta nombor Nusselt dengan penambahan pemboleh ubah tanpa dimensi iaitu Marangoni, pecahan isi padu nanozarah dan sedutan, turut dibincangkan dan diwujudkan dalam bentuk graf. Kehadiran dua penyelesaian untuk kedua-dua kes aliran meregang dan mengecut dikenal pasti dengan penggunaan pemboleh ubah sedutan. Penggunaan analisis kestabilan telah mengesahkan yang penyelesaian pertama adalah penyelesaian sebenar. Pada masa yang sama, kadar pemindahan haba meningkat dengan banyak dengan penambahan pecahan isi padu Cu (kes aliran mengecut) dan pemboleh ubah Marangoni (kes aliran meregang). Kedua-dua pemboleh ubah Marangoni dan pecahan isi padu Cu juga dapat memperlahankan proses pemisahan aliran sempadan.

 

Kata kunci: Analisis kestabilan; nanobendalir hibrid; penyelesaian dwi; perolakan Marangoni; sedutan

 

RUJUKAN

Ahmadi, M. & Willing, G. 2018. Heat transfer measurement in water based nanofluids. International Journal of Heat and Mass Transfer 118: 40-47.

Ahmadi, M.H., Mirlohi, A., Alhuyi Nazari, M. & Ghasempour, R. 2018. A review of thermal conductivity of various nanofluids. Journal of Molecular Liquids 265: 181-188.

Akbarzadeh, M., Rashidi, S., Karimi, N. & Ellahi, R. 2018. Convection of heat and thermodynamic irreversibilities in two-phase, turbulent nanofluid flows in soalr heaters by corrugated absorber plates. Advanced Powder Technology 29: 2243-2254.

Akilu, S., Sharma, K.V., Baheta, A.T. & Mamat, R. 2016. A review of thermophysical properties of water based composite nanofluids. Renewable and Sustainable Energy Reviews 66: 654-678.

Alamri, S.Z., Ellahi, R., Shehzad, N. & Zeeshan, A. 2019. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: An application of Stefan blowing. Journal of Molecular Liquids 273: 292-304.

Amirsom, N.A., Uddin, M.J., Basir, M.F.M., Ismail, A.I.M., Bég, O.A. & Kadir, A. 2019. Three-dimensional bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip. Sains Malaysiana 48(5): 1137-1149.

Arifin, N.M., Nazar, R. & Pop, I. 2013. Similarity solution of Marangoni convection boundary layer flow over a flat surface in a nanofluid. Journal of Applied Mathematics 2013: Article ID. 634746.

Arifin, N.M., Nazar, R. & Pop, I. 2011. Non-isobaric Marangoni boundary layer flow for Cu, Al2O3 and TiO2 nanoparticles in a water-based fluid. Meccanica 46(4): 833-843.

Aziz, R.C., Hashim, I. & Abbasbandy, S. 2018. Flow and heat transfer in a nanofluid thin film over an unsteady stretching sheet. Sains Malaysiana 47(7): 1599-605.

Babu, J.A.R., Kumar, K.K. & Rao, S.S. 2017. State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy Reviews 77: 551-565.

Bahiraei, M. & Mazaheri, N. 2018. Application of a novel hybrid nanofluid containing graphene-platinum nanoparticles in a chaotic twisted geometry for utilization in miniature devices: Thermal and energy efficiency considerations. International Journal of Mechanical Science 138: 337-349.

Bachmann, M., Avilov, V., Gumenyuk, A. & Rethmeier, M. 2016. Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields. International Journal of Thermal Science 101: 24-34.

Bournival, G., Ata, S. & Jameson, G.J. 2017. Bubble and froth stabilizing agents in froth flotation. Mineral Processing and Extractive Metallurgy Review 38(6): 366-387.

Bakar, N.A., Bachok, N. & Arifin, N.M. 2018. Stability analysis on the flow and heat transfer of nanofluid past a stretching/shrinking cylinder with suction effect. Results in Physics 9: 1335-1344.

Cui, C.Y., Li, X.D., Fang, C., Zhang, W.L., Ruan, Z.W., Cui, X.G., Lu, J.Z., Xia, C.D. & Lu, Y.F. 2018. Effects of Marangoni convection on the embedding dynamic behavior of SiC nano-particles into the Al molten pool during laser micro-melting. Materials & Design 143: 256-267.

Devi, S.S.U. & Devi, S.P.A. 2017. Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet. Journal of the Nigerian Mathematical Society 36(2): 419-433.

Devi, S.P.A. & Devi, S.S.U. 2016a. Numerical investigation of hydromagnetic hybrid Cu- Al2O3/water nanofluid flow over a permeable stretching sheet with suction. International Journal of Nonlinear Sciences and Numerical Simulation 17(5): 249-257.

Devi, S.S.U. & Devi, S.P.A. 2016b. Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Canadian Journal of Physics 94(5): 490-496.

Dzulkifli, N., Bachok, N., Yacob, N., Arifin, N.M. & Rosali, H. 2018. Unsteady stagnation-point flow and heat transfer over a permeable exponential stretching/shrinking sheet in nanofluid with slip velocity effect: A stability analysis. Applied Sciences 8(11): 2172.

Ellahi, R., Alamri, S.Z., Basit, A. & Majeed, A. 2018. Effects of MHD and slip on heat transfer and boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University for Science 12(4): 476-482.

Ellahi, R., Zeeshan, A. & Hassan, M. 2016. Particle shape effects on Marangoni convection boundary layer flow of a nanofluid. International Journal of Numerical Methods for Heat & Fluid Flow 26(7): 2160-2174.

Ellahi, R. 2013. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions. Applied Mathematical Modelling 37(3): 1451-1457.

Fang, T., Yao, S., Zhang, J. & Aziz, A. 2010. Viscous flow over a shrinking sheet with a second order slip flow model. Communications in Nonlinear Science and Numerical Simulation 15(7): 1831-1842.

Ghadikolaei, S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, K. & Ganji, D.D. 2017. Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technology 322: 428-438.

Ghalambaz, M., Sheremet, M.A., Mehryan, S.A., Kashkooli, F.M. & Pop, I. 2019. Local thermal non-equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag-MgO hybrid nanofluid. Journal of Thermal Analysis and Calorimetry 135(2): 1381-1398.

Gupta, M., Singh, V., Kumar, S., Kumar, S., Dilbaghi, N. & Said, Z. 2018. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. Journal of Cleaner Production 190: 169-192.

Hamid, R.A. & Arifin, N.M. 2014. The effect of wall suction/injection on MHD Marangoni convection boundary layer flow in nanofluid. AIP Conference Proceedings 1605(1): 386-391.

Hamid, R.A. & Nazar, R. 2016. Stability analysis of MHD thermosolutal Marangoni convection boundary layer flow. AIP Conference Proceedings 1750(1): 030022.

Harris, S.D., Ingham, D.B. & Pop, I. 2009. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transport in Porous Media 77(2): 267-285.

Hassan, M., Marin, M., Alsharif, A. & Ellahi, R. 2018a. Convection heat transfer flow of nanofluid in a porous medium over wavy surface. Physics Letters A 382: 2749-2753.

Hassan, M., Marin, M., Ellahi, R. & Alamri, S.Z. 2018b. Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids. Heat Transfer Research 49(18): 1837-1848.

Hassan, M., Ellahi, R., Bhatti, M.M. & Zeeshan, A. 2019. A comparative study of magnetic and non-magnetic particles in nanofluid propagating over a wedge. Canadian Journal of Physics 97(3): 277-285.

Hayat, T. & Nadeem, S. 2017. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results in Physics 7: 2317-2324.

Hayat, T., Nadeem, S. & Khan, A.U. 2018. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. European Physical Journal E 41(6): 75.

Hayat, T., Khan, M.I., Farooq, M., Alsaedi, A. & Yasmeen, T. 2017. Impact of Marangoni convection in the flow of carbon-water nanofluid with thermal radiation. International Journal of Heat and Mass Transfer 106: 810-815.

Huminic, G. & Huminic, A. 2018. Hybrid nanofluids for heat transfer applications - A state-of-the-art review. International Journal of Heat and Mass Transfer 125: 82-103.

Huminic, G. & Huminic, A. 2019. The influence of hybrid nanofluids on the performances of elliptical tube: Recent research and numerical study. International Journal of Heat and Mass Transfer 129: 132-143.

Jana, S., Salehi-Khojin, A. & Zhong, W.H. 2019. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochimica Acta 462(1-2): 45-55.

Jamaludin, A., Nazar, R. & Pop, I. 2018. Ingham problem for mixed convection flow of a nanofluid over a moving vertical plate with suction and injection effects. Sains Malaysiana 47(9): 2213-2221.

Kamal, F., Zaimi, K., Ishak, A. & Pop, I. 2019. Stability analysis of mhd stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions effect. Sains Malaysiana 48(1): 243-250.

Kamyar, A., Saidur, R. & Hasanuzzaman, M. 2012. Application of computational fluid dynamics (CFD) for nanofluids. International Journal of Heat and Mass Transfer 55(15-16): 4104-4115.

Khanafer, K., Vafai, K. & Lightstone, M. 2003. Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer 46(19): 3639-3653.

Khashi'ie, N.S., Arifin, N.M., Hafidzuddin, E.H., Wahi, N. & Ilias, M.R. 2019. Magnetohydrodynamics (MHD) flow and heat transfer of a doubly stratified nanofluid using Cattaneo-Christov model. Universal Journal of Mechanical Engineering 7(4): 206-214.

Kidess, A., Kenjereš, S., Righolt, B.W. & Kleijn, C.R. 2016. Marangoni driven turbulence in high energy surface melting processes. International Journal of Thermal Science 104: 412-422.

Lin, Y. & Zheng, L. 2015. Marangoni boundary layer flow and heat transfer of copper-water nanofluid over a porous medium disk. AIP Advances 10: 107225.

Lin, Y., Li, B., Zheng, L. & Chen, G. 2016. Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature. Powder Technology 301: 379-386.

Mahat, R., Rawi, N.A., Kasim, A.R. & Shafie, S. 2018. Mixed convection flow of viscoelastic nanofluid past a horizontal circular cylinder with viscous dissipation. Sains Malaysiana 47(7): 1617-23.

Mat, N.A., Arifin, N.M., Nazar, R., Ismail, F. & Pop, I. 2017. Radiation effects on Marangoni convection boundary layer over a permeable surface. Meccanica 48(1): 83-89.

Merkin, J.H. 1986. On dual solutions occurring in mixed convection in a porous medium. Journal of Engineering Mathematics 20(2): 171-179.

Miklavčič, M. & Wang, C.Y. 2006. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics 64(2): 283-290.

Minakuchi, H., Okano, Y. & Dost, S. 2017. Effect of thermo-solutal Marangoni convection on the azimuthal wave number in a liquid bridge. Journal of Crystal Growth 468: 502-505.

Mohamed, M.K., Noar, N.A., Salleh, M.Z. & Ishak, A. 2016. Free convection boundary layer flow on a horizontal circular cylinder in a nanofluid with viscous dissipation. Sains Malaysiana 45(2): 289-296.

Nadeem, S., Abbas, N. & Khan, A.U. 2017. Characteristics of three dimensional stagnation point flow of hybrid nanofluid past a circular cylinder. Results in Physics 8: 829-835.

Naganthran, K., Nazar, R. & Pop, I. 2018. Effects of thermal radiation on mixed convection flow over a permeable vertical shrinking flat plate in an Oldroyd-B fluid. Sains Malaysiana 47(5): 1069-1076.

Oztop, H.F. & Abu-Nada, E. 2008. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow 29(5): 1326-1336.

Rashidi, S., Akar, S., Bovand, M. & Ellahi, R. 2018. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renewable Energy 115: 400-410.

Raza, M.Q., Kumar, N. & Raj, R. 2018. Surfactants for bubble removal against buoyancy. Scientific Reports 6: 19113.

Rostami, M.N., Dinarvand, S. & Pop, I. 2018. Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid. Chinese Journal of Physics 56(5): 2465-2478.

Roşca, A.V. & Pop, I. 2013. Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip. International Journal of Heat and Mass Transfer 60: 355-364.

Sarkar, J., Ghosh, P. & Adil, A. 2015. A review on hybrid nanofluids: Recent research, development and applications. Renewable and Sustainable Energy Reviews 43: 164-177.

Sastry, D.R., Murti, A.S. & Kantha, T.P. 2013. The effect of heat transfer on MHD Marangoni boundary layer flow past a flat plate in nanofluid. International Journal of Engineering Mathematics 2013: Article ID. 581507.

Shampine, L.F., Gladwell, I., Shampine, L. & Thompson, S. 2003. Solving ODES with Matlab. Cambridge: Cambridge University Press.

Sheikholeslami, M. & Ganji, G. 2017. Influence of magnetic field on CuO-H2O nanofluid flow considering Marangoni boundary layer. International Journal of Hydrogen Energy 42(5): 2748-2755.

Sheikholeslami, M. & Chamkha, A.J. 2017. Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. Journal of Molecular Liquids 225: 750-757.

Sheikholeslami, M., Ellahi, R., Shafee, A. & Li, Z. 2019. Numerical investigation for second law analysis of ferrorfluid inside a porous semi annulus: An application of entropy generation and exergy loss. International Journal of Numerical Methods for Heat and Fluid Flow 29(3): 1079-1102.

Sidik, N.A.C., Adamu, I.M., Jamil, M.M., Kefayati, G.H.R., Mamat, R. & Najafi, G. 2016. Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. International Communications in Heat and Mass Transfer 78: 68-79.

Sohail, A., Fatima, M., Ellahi, R. & Akram, K.B. 2019. A videographic assessment of ferrofluid during magnetic drug targeting: An application of artifical intelligence in nanomedicine. Journal of Molecular Liquids 285: 47-57.

Soid, S.K., Ishak, A. & Pop, I. 2018. MHD stagnation-point flow over a stretching/shrinking sheet in a micropolar fluid with a slip boundary. Sains Malaysiana 47(11): 2907-2916.

Soltani, O. & Akbari, M. 2016. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study. Physica E: Low-dimensional Systems and Nanostructures 84: 564-570.

Sundar, L.S., Sharma, K.V., Singh, M.K. & Sousa, A.C.M. 2017. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor - A review. Renewable and Sustainable Energy Reviews 68: 185-198.

Timofeev, V.V., Kalaev, V.V. & Ivanov, V.G. 2015. 3D melt convection in sapphire crystal growth: Evaluation of physical properties. International Journal of Heat and Mass Transfer 87: 42-48.

Vafaei, M., Afrand, M., Sina, N., Kalbasi, R., Sourani, F. & Teimouri, H. 2017. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Physica E: Low-dimensional Systems and Nanostructures 85: 90-96.

Waini, I., Ishak, A. & Pop, I. 2019. Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface. International Journal of Numercial Methods for Heat and Fluid Flow 29(9): 3110-3127.

Weidman, P.D., Kubitschek, D.G. & Davis, A.M.J. 2006. The effect of transpiration on self-similar boundary layer flow over moving surfaces. International Journal of Engineering Science 44(11-12): 730-737.

Yahaya, R., Arifin, N.M. & Mohamed Isa, S. 2018. Stability analysis on magnetohydrodynamic flow of casson fluid over a shrinking sheet with homogeneous-heterogeneous reactions. Entropy 20(9): 652.

Yousif, M.A., Ismael, H.F., Abbas, T. & Ellahi, R. 2019. Numerical study of momentum and heat transfer of MHD Carreau nanofluid over exponentially stretched plate with internal heat source/sink and radiation. Heat Transfer Research 50(7): 649-658.

Zaimi, K., Ishak, A. & Pop, I. 2017. Unsteady flow of a nanofluid past a permeable shrinking cylinder using Buongiorno's model. Sains Malaysiana 46(9): 1667-1674.

 

*Pengarang untuk surat-menyurat; email: norihana@upm.edu.my  

 

 

 

 

 

sebelumnya