Sains Malaysiana
49(7)(2020): 1491-1498
http://dx.doi.org/10.17576/jsm-2020-4907-02
Frictional
Properties of the Wax Coverings in Nepenthes
alata Slippery Zone: Results from AFM Scanning
(Sifat Geseran Penutup Lilin di Zon Licin Nepenthes
alata: Hasil daripada Pengimbasan AFM)
LIXIN WANG*, SHUOYAN ZHANG, LINLIN ZHANG &
SHANSHAN LI
School of
Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang
050018, People’s Republic of China
Diserahkan:
8 April 2019/Diterima: 13 Mac 2020
ABSTRACT
Slippery zone of Nepenthes alata presents anisotropic friction behaviors depending on its evolved structures.
Studies have demonstrated the contribution of lunate cells, but the role of wax
coverings has not been specially investigated. In this paper, we showed findings obtained from AFM scanning and SEM observation on characterizing the frictional
properties of wax coverings. Friction data generated by the AFM cantilever on
wax coverings along downward and upward directions were different. The difference
was insignificant (2.56%) when applying the load force of 300 nN, but increased
(4.83-8.40%) when applying the load force of 500-1500 nN. The scanned wax coverings showed no
detectable damage when applying the load force of 300 nN, whereas observable
damage was presented when the load force exceeded 500 nN. When the load force
increased to 1500 nN, the wax coverings were destroyed completely. The
results suggest the wax coverings depend on their surface morphology and
structural characteristic to generate different frictional properties in
different directions, but the difference was inconspicuous to declare the
surface anisotropy. This study is helpful
for further understanding the anisotropic properties of slippery
zone, and motivates the slippery zone to be a bionic prototype for designing
anisotropic surfaces.
Keywords: Biotribology;
frictional properties; slippery zone; surface anisotropy; wax
coverings
ABSTRAK
Zon licin Nepenthes alata menunjukkan tingkah laku geseran anisotropik bergantung pada strukturnya yang
berkembang. Kajian telah menunjukkan sumbangan sel-sel lunat, tetapi peranan
penutup lilin belum dikaji secara khusus. Dalam makalah ini, kami menunjukkan
penemuan yang diperoleh daripada pengimbasan AFM dan pemerhatian SEM mengenai ciri
sifat geseran penutup lilin. Data geseran yang dihasilkan oleh julur AFM pada
penutup lilin pada arah bawah dan atas adalah berbeza. Perbezaannya tidak
bererti (2.56%) apabila menggunakan daya beban 300 nN, tetapi meningkat
(4.83-8.40%) ketika menggunakan daya beban 500-1500 nN. Penutup lilin yang
diimbas tidak menunjukkan kerosakan boleh kesan ketika menerapkan daya beban
300 nN, sedangkan kerosakan boleh kesan ditunjukkan ketika daya beban melebihi
500 nN. Apabila daya beban meningkat kepada 1500 nN, penutup lilin hancur
sepenuhnya. Keputusan kajian menunjukkan penutup lilin bergantung pada
morfologi permukaan dan ciri strukturnya untuk menghasilkan sifat geseran yang
berlainan dalam arah yang berbeza, tetapi perbezaannya tidak jelas untuk
menyatakan anisotropi permukaan. Kajian ini berguna untuk lebih memahami sifat
anisotropik zon licin, dan mendorong zon licin untuk menjadi prototip bionik
bagi merancang permukaan anisotropik.
Kata kunci: Anisotropi
permukaan; biotribologi; penutup lilin; sifat geseran; zon licin
RUJUKAN
Bauer, U., Willmes, C. & Federle, W. 2009.
Effect of pitcher age on trapping efficiency and natural prey capture in
carnivorous Nepenthes rafflesiana plants. Ann. Bot. 103(8): 1219-1226.
Benz, M.J., Gorb, E.V. & Gorb, S.N. 2012.
Diversity of the slippery zone microstructure in pitchers of nine carnivorous Nepenthes taxa. Arthropod-Plant Inte.
6(1): 147-158.
Bobisut, O. 1910. Über den funktionswechsel der
spaltöffnungen in der gleitzone der Nepenthes-kannen,
Akad Wiss, Wien Sitzungsber, Math-Naturwiss. Kl. Abt. 1(1): 3-10.
Bonn, H.F. & Federle, W. 2004. Insect
aquaplaning: Nepenthes pitcher plants
capture prey with the peristome, a fully wettable water-lubricated anisotropic
surface. Proc. Natl. Acad. Sci. USA. 101: 14138-14143.
Chen, H.W., Zhang, L.X., Zhang, P.F., Zhang, D.Y.,
Han, Z.W. & Jiang, L. 2017. A novel bioinspired continuous unidirectional
liquid spreading surface structure from the peristome surface of Nepenthes alata. Small 13(4): 1670-1676.
Chen, H.W., Zhang, P.F., Zhang, L.W., Liu, H.L.,
Jiang, Y., Zhang, D.Y., Han, Z.W. & Jiang, L. 2016. Continuous directional
water transport on the peristome surface of Nepenthes
alata. Nature 532(7597): 85-89.
Ellison, A.M. & Gotelli, N.J. 2001. Evolutionary
ecology of carnivorous plants. Trends Ecol. Evol. 16(11): 623-629.
Ellison, A.M. & Gotelli, N.J. 2009. Energetics
and the evolution of carnivorous plants-Darwin's most wonderful plants in the
world. J. Exp. Bot. 60(1): 19-42.
Gaume, L. & Giusto, B.D. 2009. Adaptive
significance and ontogenetic variability of the waxy zone in Nepenthes rafflesiana. Ann. Bot.
104(7): 1281-1291.
Gaume, L., Perret, P., Gorb, E., Gorb, S., Labat,
J.J. & Rowe, N. 2004. How do plant waxes cause flies to slide? Experimental
tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arth. Struct. Dev. 33(1):
103-111.
Gaume, L., Gorb, S. & Rowe, N. 2002. Function
of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. New
Phytol. 156(3): 479-489.
Gorb, E.V. & Gorb, S.N. 2011. The effect of
surface anisotropy in the slippery zone of Nepenthes
alata pitchers on beetle attachment. Beilstein. J. Nanotechnol. 2(1): 302-310.
Gorb, E. & Gorb, S. 2006. Physicochemical
properties of functional surface in pitchers of the carnivorous plant Nepenthes alata blanco (Nepenthaceae). Plant Biol. 8(6): 841-848.
Gorb, E., Haas, K., Henrich, A., Enders, S.,
Barbakadze, N. & Gorb, S. 2005. Composite structure of the crystalline
epicuticular wax layer of the slippery zone in the pitchers of the carnivorous
plant Nepenthes alata and its effect
on insect attachment. J. Exp. Biol. 208(24): 4651-4662.
Juniper, B.E. & Burras, J.K. 1962. How pitcher
plant trap insects. New Sci. 269(1):
75-77.
Knoll, F. 1914. Über die ursache des ausgleitens
der insektenbeine an wachsbedeckten pflanzenteilen. Jahrb. Wiss. Bot. 54(12): 448-497.
Koch, K., Bhushan, B. & Barthlott, W. 2009.
Multifunctional surface structures of plants: An inspiration for biomimetics. Prog. Mater. Sci. 54(2):
137-178.
Moran, J.A. 1996. Pitcher dimorphism, prey
composition and the mechanisms of prey attraction in the pitcher plant Nepenthes rafflesiana in Borneo. J. Ecol. 84(4): 515-525.
Moran, J.A. & Clarke, C.M. 2010. The
carnivorous syndrome in Nepenthes pitcher plants: Current state of knowledge and potential future directions. Plant Signal. Behav. 5(6): 644-648.
Moran, J.A., Booth, W.E. & Charles, J.K. 1999.
Aspects of pitcher morphology and spectral characteristics of six Bornean Nepenthes pitcher plant species:
Implications for prey capture. Ann. Bot. 83(5): 521-528.
Page, O.T. & Lennon, K.A. 1999. Structure and
development of the pitchers from the carnivorous plant Nepenthes alata (Nepenthaceae). Am. J. Bot. 86(10): 1382-1390.
Pant, D.D. & Bhatnagar, S. 1977. Morphological
studies in Nepenthes (Nepenthaceae). Phytomorphology 27(1): 13-34.
Riedel, M., Eichner, A. & Jetter, R. 2003. Slippery surfaces of
carnivorous plants: Composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218(1): 87-97.
Riedel, M., Eichner, A., Meimberg, H. & Jetter,
R. 2007. Chemical composition of epicuticular wax crystals on the slippery zone
in pitchers of five Nepenthes species
and hybrids. Planta 225(6):
1517-1534.
Scholz, I., Bückins, M., Dolge, L., Erlinghagen,
T., Weth, A., Hischen, F., Mayer, J., Hoffmann, S., Riederer, M., Riedel, M.
& Baumgartner, W. 2010. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect
attachment via microscopic surface
roughness. J. Exp. Biol. 213(7):
1115-1125.
Thornham, D.G., Smith, J.M., Grafe, T.U. &
Federle, W. 2012. Setting the trap: Cleaning behavior of Camponotus schmitzi ants increases long-term capture efficiency of
their pitcher plant host Nepenthes
bicalcarata. Funct. Ecol. 26(1): 11-19.
Wang, L.X. & Zhou,
Q. 2016. Surface hydrophobicity of
slippery zones in the pitchers of two Nepenthes species and a hybrid. Sci. Rep. 6: 19907.
Wang, L.X. & Zhou, Q. 2014. Nepenthes pitchers: Surface structure,
physical property, anti-attachment function and potential application in
mechanical controlling plague locust. Chin. Sci. Bull. 59(21): 2513-2523.
Wang, L.X. & Zhou, Q. 2011. Friction force
of locust Locusta migratoria manilensis (Orthoptera,
Locustidae) on slippery zones surface of pitchers from four Nepenthes species. Tribol. Lett. 44: 345-353.
Wang, L.X. & Zhou, Q. 2010. Numerical
characterization of surface structures of slippery zone in Nepenthes alata pitchers and its mechanism of reducing locust’s
attachment force. Adv. Nat. Sci.
2(3): 152-160.
Wang, L.X., Dong, S.Y. & Zhou, Q. 2016.
Slippery surface of Nepenthes alata pitcher: The role of lunate cell and wax crystal in restricting attachment
ability of ant Camponotus japonicus Mayr. J. Bionic. Eng. 13(3):
373-387.
Wang, L.X., Zhou, Q., Zheng, Y.J. & Xu, S.Y.
2009. Composite structure and properties of pitcher surface of carnivorous
plant Nepenthes and its influence on
insect attachment system. Prog. Nat. Sci. 19(12): 1657-1664.
Wang, Z.B., Heng, L.P. & Jiang,
L. 2018a. Effect of lubricant viscosity on the self-healing properties and
electrically driven sliding of droplets on anisotropic slippery surfaces. J. Mater. Chem. A. 6(8): 3414-3421.
Wang, Z.B., Liu, Y., Guo, P., Heng, L.P.
& Jiang, L. 2018b. Photoelectric synergetic
responsive slippery surfaces based on tailored anisotropic films generated by
interfacial directional freezing. Adv. Funct. Mater. 28: 1801310.
Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J.,
Hatton, B., Grinthal, A. & Aizenberg, J. 2011. Bioinspired self-repairing
slippery surfaces with pressure-stable omniphobicity. Nature 477(7365): 443-447.
Zhang, P.F., Chen, H.W. & Zhang, D.Y. 2015. Investigation of the anisotropic
morphology-induced effects of the slippery zone in pitchers of Nepenthes
alata. J. Bionic Eng. 12(1): 79-87.
*Pengarang untuk surat-menyurat; email: wanglx@hebust.edu.cn
|