Sains Malaysiana 49(9)(2020): 2035-2042

http://dx.doi.org/10.17576/jsm-2020-4909-01

 

Cultivation of Chlorella vulgaris in Anaerobically Digested Dairy Manure Wastewater (ADDMW) for Protein and Chlorophyll Production

(Pengkulturan Chlorella vulgaris dalam Air Buangan Sapi Cernaan Anaerobik (ADDMW) bagi Penghasilan Protein dan Klorofil)

 

TAUFIK TAUFIKURAHMAN1*, MUHAMMAD ARIEF ARDIANSYAH1, NOVI TRI ASTUTININGSIH1 & EKO AGUS SUYONO2

 

1School of Life Sciences and Technology, Institut Teknologi Bandung, 40132 Bandung, Indonesia

2Faculty of Biology, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia

 

Diserahkan: 15 Januari 2020/Diserahkan: 15 April 2020

 

ABSTRACT

Chlorella vulgaris is a eukaryotic, unicellular green microalgae that can be harvested as protein source since it can contain protein up to 50% of its dry weight. However, its cultivation is costly due to the price of its growth medium. In this research we used bioslurry or known as anaerobically digested dairy manure wastewater (ADDMW) as growth medium for C. vulgaris, since dairy manure is known to contain high nitrogen and phosphorus and its availability relatively abundant in rural areas. The cultivation of C. vulgaris in the ADDMW medium was conducted in lab-scale (19 L) photobioreactors. After 14 days the culture was able to produce chlorophyll content of 34.62 µg/mL, and after 28 days was able to produce protein up to 35% dry weight. Moreover, C. vulgaris was also able to reduce PO4-P, NH4-N and NO3-N levels in ADDMW by 45.95, 78.24 and 17.38%, respectively.

 

Keywords: ADDMW; Chlorella vulgaris; chlorophyll; phytoremediation; protein

 

ABSTRAK

Chlorella vulgaris adalah mikroalgae bersel tunggal yang memiliki kandungan protein sehingga 50% berat keringnya. Namun kos pengkulturan C. vulgaris adalah tinggi kerana medium pengkulturannya yang mahal. Dalam kajian ini, kami menggunakan air buangan sapi cernaan anaerobik daripada proses penghasilan biogas. PengkulturanC. vulgaris dalam medium air buangan sapi cernaan anaerobik (ADDMW) dalam fotobioreaktor (19 L) berskala makmal selama 14 hari dapat menghasilkanC. vulgaris dengan kandungan klorofil 34.62 µg/mL dan dalam 28 hari dapat menghasilkan C. vulgaris dengan kadar protein 35% berat kering. Selain itu, kultur C. vulgaris dalam medium ADDMW dapat menurunkan kadar PO4-P, NH4-N dan NO3-N ADDMW masing-masing sebanyak 45.95, 78.24 dan 17.38%.

 

Kata kunci: ADDMW; Chlorella vulgaris; fitopemulihan; klorofil; protein

 

RUJUKAN

Amin, M., Chetpattananondh, P., Khan, M.N., Mushtaq, F. & Sami, S.K. 2018. Extraction and quantification of chlorophyll from microalgae Chlorella sp. IOP Conference Series: Materials Science and Engineering 414(2018): 012025.

Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A. & Das, K.C. 2009. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. International Journal of Molecular Sciences 10(2): 518-532.

Choi, H-J. & Lee, S-M. 2012. Effects of microalgae on the removal of nutrients from wastewater: Various concentrations of Chlorella vulgaris. Environmental Engineering Research 17(51): 53-58.

Franchino, M., Comino, E., Bona, F. & Riggio, V.A. 2013. Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 92(6): 738-744.

Goncalves, A.L., Pires, J.C.M. & Simoes, M. 2017. A review on the use of microalgal consortia for wastewater treatment. Algal Research 24: 403-415.

Hena, S., Fatimah, S. & Tabassum, S. 2015. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resources and Industry 10: 1-14.

Henchion, M., Hayes, M., Mullen, A., Fenelon, M. & Tiwari, B. 2017. Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 6(7): 53.

Hu, B., Zhou, W., Min, M., Du, Z., Chen, P., Ma, X., Liu, Y., Lei, H., Shi, J. & Ruan, R. 2013. Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production. Applied Energy 107: 255-263.

Ji, F., Liu, Y., Hao, R., Li, G., Zhou, Y. & Dong, R. 2014. Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater. Bioresource Technology 161: 200-207.

Jian-Ming, L., Cheng, L-H., Xu, X-H., Zhang, L. & Chen, H-L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology 101(17): 6797-6804.

Kumar, P.K., Krishna, S.V., Verma, K., Pooja, K., Bhagawan, D. & Himabindu, V. 2018. Phycoremediation of sewage wastewater and industrial flue gases for biomass generation from microalgae. South African Journal of Chemical Engineering 25: 133-146.

Liang, Y., Kashdan, T., Sterner, C., Dombrowski, L., Petrick, I., Kroger, M. & Hofer, R. 2015. Algal biorefineries. In Industrial Biorefineries & White Biotechnology, edited by Ashok Pandey, Höfer, R., Mohammad Taherzadeh, K. Madhavan Nampoothiri & Larroche, C. USA: Elsevier. pp. 35-90.

Podder, M.S. & Majumder, C.B. 2016. Arsenic toxicity to Chlorella pyrenoidosa and its phycoremediation. Acta Ecologia Sinica 36(4): 256-268.

Powell, N., Shilton, A., Chisti, Y. & Pratt, S. 2009. Towards a luxury uptake process via microalgae - defining the polyphosphate dynamics. Water Research 43(17): 4207-4213.

Rao, P.H., Kumar, R.R., Raghavan, B.G., Subramanian, V.V. & Sivasubramanian, V. 2011. Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility. Water SA 37(1): 7-14.

Safafar, H., Norregaard, P.U., Ljubic, A., Moller, P., Holdt, S.L. & Jacobsen, C. 2016. Enhancement of protein and pigment content in two Chlorella species cultivated on industrial process water. Journal of Marine Science and Engineering 4(4): 84-98.

Sayadi, M.H., Ahmadpour, N., Capoorchali, M.F. & Rezaei, M.R. 2016. Removal of nitrate and phosphate from aqueous solutions by microalgae: An experimental study. Global Journal of Environmental Science and Management 2(3): 357-364.

Seyfabadi, J., Ramenzapour, Z. & Khoeyl, Z.A. 2011. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology 23: 721-726.

Simon, D. & Hellineell, S. 1998. Extraction and quantification of chlorophyll-a from freshwater green algae. Water Research 32(7): 2220-2223.

Taufikurahman, T. & Istiqomah, I.N. 2019. Phycoremediation of anaerobic digested dairy manure wastewater using microalgae Chlorella vulgaris. IOP Conference Series: Earth Environmental Science 299: 012013.

Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J. & Ruan, R.R. 2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology 101(8): 2623-2628.

Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y. & Ruan, R. 2009. Cultivation of green algae Chlorella sp. in different wastewater from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology 162(4): 1174-1186.

Yang, L., Tan, X., Li, D., Chu, H., Zhou, X., Zhang, Y. & Yu, H. 2015. Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Bioresource Technology 181: 54-61.

Zheng, H., Yin, J., Gao, Z., Huang, H., Ji, X. & Dou, C. 2011. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: A comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Applied Biochemistry and Biotechnology 164(7): 1215-1224.

Zhu, S., Qin, L., Feng, P., Shang, C., Wang, Z. & Yuang, Z. 2018. Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor. Bioresource Technology 274: 313-320.

  *Pengarang untuk surat-menyurat; email: taufik@sith.itb.ac.id