Sains Malaysiana 49(9)(2020): 2043-2051

http://dx.doi.org/10.17576/jsm-2020-4909-02

 

Temporal Discrete Z-Number and Its Application in Assessing EEG Signal Data of Epileptic Seizure

(Nombor-Z Diskret Temporal dan Aplikasinya dalam Menilai Data Signal EEG Sawan Epilepsi)

 

MUJAHID ABDULLAHI1,2, TAHIR AHMAD1* & VINOD RAMACHANDRAN3

 

1Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Takzim, Malaysia

 

2Department of Mathematics and Computer Science, Faculty of Natural and Applied Sciences, Sule Lamido University 048 SLU Kafin Hausa, Jigawa, Nigeria

 

3Level 23, Menara CIMB, Jalan Stesen Sentral 2, Kuala Lumpur Sentral, 50470 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 15 Januari 2020/Diterima: 10 Mei 2020

 

ABSTRACT

Analysis and modeling of a complex physical system, particularly EEG signals involved vague and uncertain information. The approach introduced by Kosanovic using temporal fuzzy set to model a complex system particularly the EEG signal does not address the problem of uncertainty for the time of occurrence. In this paper, an ordered discrete Z-number is used to construct temporal discrete Z-number to assess EEG signal data of an epileptic seizure for the first time. The proposed temporal discrete Z-number is able to accommodate the problem of uncertainty with regards to the time of occurrence for a given seizure by using and modifying the method for measuring the uncertainty of Z-number.

 

Keywords: Discrete Z-number; dynamic system; fuzzy set; uncertainty; Z-number

 

ABSTRAK

Pemodelan dan analisis sesuatu sistem yang kompleks, khususnya tentang kesamaran dan kebolehpercayaan melibatkan maklumat isyarat EEG itu sendiri. Pendekatan yang diperkenalkan oleh Kosanovic menggunakan set kabur temporal bagi memodelkan sesuatu sistem yang kompleks tidak menangani masalah ketidakpastian masa kejadian akan maklumat yang tercerap. Dalam makalah ini, nombor-Z diskret tertib digunakan bagi membina nombor-Z diskret temporal untuk menganalisis isyarat EEG yang tercerap ketika serangan sawan, diperkenalkan buat julung kalinya. Nombor-Z diskret temporal mampu menangani masalah ketidakpastian berhubung dengan pemasalahan masa kejadian bagi sesuatu serangan sawan dengan menggunakan pengubahsuaian yang dibuat terhadap kaedah mengukur ketidakpastian bagi nombor-Z.

 

Kata kunci: Ketidakpastian; nombor-Z; nombor-Z diskret; set kabur; sistem dinamik

 

RUJUKAN

Abdullahi, M., Ahmad, T. & Ramachandran, V. 2020. Ordered discrete and continuous Z-numbers. Malaysia Journal of Fundamental and Applied Sciences (In Press).

Aliev, R. & Guirimov, B. 2018. Z-number clustering based on general type-2 fuzzy sets. In International Conference on Theory and Applications of Fuzzy Systems and Soft Computing. Springer, Cham. pp. 270-278.

Aliev, R.A. & Kreinovich, V. 2017. Z-Numbers and type-2 fuzzy sets: A representation result. Intelligent Automation & Soft Computing 24(1): 1-5.

Aliev, R.A., Alizadeh, A.V. & Huseynov, O.H. 2015. The arithmetic of discrete Z-numbers. Information Sciences 290: 134-155.

Casasnovas, J. & Riera, J.V. 2006. On the addition of discrete fuzzy numbers. In Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics. World Scientific and Engineering Academy and Society (WSEAS). pp. 432-437.

Fauziah, B.Z. 2008. Dynamic profiling of EEG data during seizure using fuzzy information space. Universiti Teknologi Malaysia, Ph.D. Thesis (Unpublished).

Kang, B., Deng, Y., Hewage, K. & Sadiq, R. 2018. A method of measuring uncertainty for Z-number. IEEE Transactions on Fuzzy Systems 27(4): 731-738.

Kosanovic, B.R., Chaparro, L.F. & Sclabassi, R.J. 1996. Signal analysis in fuzzy information space. Fuzzy Sets and Systems 77(1): 49-62.

Kosko, B. 1990. Fuzziness vs. probability. International Journal of General System 17(2-3): 211-240.

Nagypál, G. & Motik, B. 2003. A fuzzy model for representing uncertain, subjective, and vague temporal knowledge in ontologies. In OTM Confederated International Conferences on the Move to Meaningful Internet Systems. Springer, Berlin, Heidelberg. pp. 906-923.

Mendel, J.M. & John, R.B. 2002. Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems 10(2): 117-127.

Rangasamy, P. 2009. A note on properties of temporal intuitionistic fuzzy sets. In Notes on IFS Conference Proceedings. 15(1): 42-48.

Sharmila, A. & Geethanjali, P. 2019. A review on the pattern detection methods for epilepsy seizure detection from EEG signals. Biomedical Engineering/Biomedizinische Technik 64(5): 507-517.

Zadeh, L.A. 2011. A note on Z-numbers. Information Sciences 181(14): 2923-2932.

 

*Pengarang untuk surat-menyurat; email: tahir@ibnusina.utm.my

   

 

sebelumnya