Sains Malaysiana 49(9)(2020): 2053-2063
http://dx.doi.org/10.17576/jsm-2020-4909-03
Short Term Gold-Mine Tailings Exposure Induced Growth and Photosynthesis
of Philippine Tung (Reutealis trisperma [Blanco])
(Pendedahan
Amang Lombong Emas Jangka Pendek Teraruh Pertumbuhan dan Fotosintesis Philippine Tung (Reutealis trisperma [Blanco]))
HAMIM
HAMIM1*, DIBYO PRANOWO2, LULUK SETYANINGSIH3,
MUHAMMAD HILMI4 & DEDEN SAPRUDIN5
1Department
of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Jl.
Agathis, Kampus IPB Darmaga, Bogor, Indonesia
2Research
Institute for Industrial and Refreshing Crops (Balittri), Indonesian Agency for
Agricultural, Research and Development, Ministry of Agriculture of Republic of
Indonesia, Pakuwon, Sukabumi, West Java, Indonesia
3Faculty
of Forestry, University of Nusa Bangsa, Bogor, Indonesia
4School
of Vocation, IPB University, Bogor, Indonesia
5Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
Diserahkan: 15 Januari 2020/Diterima: 7 Mei 2020
Abstract
Philippine
Tung (Reutealis
trisperma [Blanco] Airy Shaw) is one of non-edible oil producing plant
resistant to unfavorable conditions and therefore this plant has prospective
role to be used in phytoremediation program on gold post-mined area. The
experiment aimed to analyze photosynthesis and growth of R. trisperma plants
in response to short term gold-mine tailing treatment in polybag experiment.
The experiment was carried out using completely randomized design with two
factors and 5 replications. The first factor was five varieties of R. trisperma (M1, M2, D1, D2 and HR) and the second factor was gold-mine tailings
treatment comprised 0, 25, 50, and 100% of tailings which was applied in
combination with mixed compost and soil 1:3 (v/v) as a basic media. Plant
growth and physiological characters were observed after 6 weeks of the
treatment. The result showed that even though malondialdehyde (MDA) of R.
trisperma leaves increased slightly, but the plants treated with gold-mine
tailing had higher photosynthetic rate than that of the control (untreated)
plants, which resulted in the improvement of root and shoot growth up to 70 and
90%, respectively. Higher content of Ca, Mg, Fe, Zn, and Mn in gold-mine
tailing may have positive effect to R. trisperma indicated by
photosynthesis and growth enhancement which suggests the plant tolerance to
gold-mine tailings.
Keywords:
Gold-mine tailing; heavy metal stress; photosynthesis; phytoremediation; Reutealis
trisperma
Abstrak
Philippine
Tung (Reutealis trisperma [Blanco] Airy Shaw) adalah salah satu daripada
tumbuhan hasilan minyak yang tidak dapat dimakan yang tahan terhadap keadaan
yang kurang baik dan oleh itu tumbuhan ini mempunyai peranan yang akan
digunakan dalam program fitopemulihan pada kawasan pasca lombong emas. Uji kaji
ini bertujuan untuk menganalisis fotosintesis dan pertumbuhan tumbuhan R.
trisperma sebagai tindak balas terhadap rawatan amang emas jangka pendek
dalam percubaan polibeg. Uji kaji ini dijalankan menggunakan reka Acak Lengkap
dengan dua faktor dan 5 ulangan. Faktor pertama adalah lima jenis R.
trisperma (M1, M2, D1, D2 dan HR) dan faktor kedua adalah rawatan amang
lombong emas terdiri daripada 0, 25, 50 dan 100% amang yang digunakan dalam
gabungan dengan campuran kompos dan tanah 1: 3 (v/v) sebagai media asas.
Pertumbuhan tumbuhan dan watak fisiologi diperhatikan selepas 6 minggu rawatan.
Hasilnya menunjukkan bahawa walaupun kandungan malondialdehida (MDA) daun R.
trisperma meningkat sedikit, namun tumbuh-tumbuhan yang dirawat dengan amang
emas mempunyai kadar fotosintesis yang lebih tinggi daripada tanaman kawalan
(tidak dirawat), yang mengakibatkan peningkatan akar dan pucuk pertumbuhan
masing-masing sehingga 70 dan 90%. Kandungan Ca, Mg, Fe, Zn dan Mn yang lebih
tinggi dalam amang lombong emas mungkin mempunyai kesan positif kepada R.
trisperma yang ditunjukkan oleh fotosintesis dan peningkatan pertumbuhan
yang menunjukkan toleransi tumbuhan R. trisperma kepada amang lombong
emas.
Kata
kunci: Amang lombong emas; fitopemulihan; fotosintesis; Reutealis
trisperm; tegasan logam berat
RUJUKAN
Ali,
H., Khan, E. & Sajad, M.A. 2013. Phytoremediation of heavy metals -
concepts and applications. Chemosphere 91(7): 869-881.
Allakhverdiev,
S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A., Carpentier, R. & Mohanty,
P. 2008. Heat stress: An overview of molecular responses in photosynthesis. Photosynthesis
Research 98(1-3): 541-550.
Apel,
K. & Hirt, H. 2004. Reactive oxygen species: Metabolism, oxidative stress,
and signal transduction. Annual Review of Plant Biology 55: 373-399.
Arifin,
Y.I., Sakakibara, M. & Sera, K. 2015. Impacts of artisanal and small-scale
gold mining (ASGM) on environment and human health of Gorontalo Utara Regency,
Gorontalo Province, Indonesia. Geosciences 5(2): 160-176.
ATSDR
2003. Agency for Toxic Substances and Disease Registry. U.S. Department of Health &
Human Services. Accessed on 10 November 2018.
Beale,
S.I. 1999. Enzymes of chlorophyll biosynthesis. Photosynthesis Research 60(1): 43-73.
Cakmak,
I. & Yazici, A.M. 2010. Magnesium: A forgotten element in crop production. Better Crops 94(2): 23-25.
Chaffai,
R. & Koyama, H. 2011. Heavy metal tolerance in Arabidopsis thaliana. Advances in Botanical Research 60: 1-49.
Choppala,
G., Saifullah, Bolan, N., Bibi, S., Iqbal, M., Rengel, Z., Kunhikrishnan, A.,
Ashwath, N. & Ok, Y.S. 2014. Cellular mechanisms in higher plants governing
tolerance to cadmium toxicity. Critical Reviews in Plant Sciences 33(5):
374-391.
Dong,
Q., Hu, S., Fei, L., Liu, L. & Wang, Z. 2019. Interaction between Cd and Zn
on metal accumulation, translocation and mineral nutrition in tall fescue (Festuca
arundinacea). International Journal of Molecular Sciences 20(13):
3332.
Ekmekçi,
Y., Tanyolac, D. & Ayhan, B. 2008. Effects of cadmium on antioxidant enzyme
and photosynthetic activities in leaves of two maize cultivars. Journal of
Plant Physiology 165(6): 600-611.
Erakhrumen,
A.A. & Agbontalor, A. 2007. Phytoremediation: An
environmentally sound technology for pollution prevention, control and
remediation in developing countries. Educational Research and Review 2(7): 151-156.
Farhat,
N., Elkhouni, A., Zorrig, W., Smaoui, A., Abdelly, C. & Rabhi, M. 2016.
Effects of magnesium deficiency on photosynthesis and carbohydrate
partitioning. Acta Physiologiae Plantarum 38(6): 145.
Ghosh,
M. & Singh, S.P. 2005. A review on phytoremediation of heavy metals and
utilization of it’s by products. Asian Journal on Energy and Environment 6(4): 18.
Gransee,
A. & Führs, H. 2013. Magnesium mobility in soils as a challenge for soil
and plant analysis, magnesium fertilization and root uptake under adverse
growth conditions. Plant and Soil 368(1-2): 5-21.
Guala,
S.D., Vega, F.A. & Covelo, E.F. 2010. The dynamics of heavy metals in plant-soil interactions. Ecological Modelling 221(8): 1148-1152.
Hamim,
H., Hilmi, M., Pranowo, D., Saprudin, D. & Setyaningsih, L. 2017a.
Morpho-physiological changes of biodiesel producer plants Reutealis
trisperma (Blanco) in response to gold-mining wastewater. Pakistan
Journal of Biological Sciences: PJBS 20(9): 423-435.
Hamim,
H., Violita, V., Triadiati, T. & Miftahudin, M. 2017b. Oxidative stress and
photosynthesis reduction of cultivated (Glycine max L.) and wild soybean
(G. tomentella L.) exposed to drought and paraquat. Asian Journal of
Plant Sciences 16(2): 65-77.
Hamim,
H., Banon, S. & Dorly, D. 2016. Comparison of physiological and anatomical
changes of C3 (Oryza sativa [L.]) and C4 (Echinochloa crusgalli [L.])
leaves in response to drought stress. IOP Conference Series: Earth and
Environmental Science 31: 012040.
Herman,
M. & Pranowo, D. 2010. Kemiri sunan untuk konservasi tanah dan air.
Sirkuler teknologi Tanaman Rempah dan Industri. Sukabumi: Balai Penelitian
Tanaman Rempah dan Aneka Tanaman Industri.
Herman,
M., Syakir, M., Pranowo, D., Syaefudin & Sumanto. 2013. Kemiri Sunan
(Reutealis trisperma
(Blanco) Airy Shaw) Vegetable Oil Producing Plant and Land Conservation. Jakarta: IAARD Press.
Hidayati,
N., Juhaeti, T. & Syarif, F. 2009. Mercury and cyanide contaminations in
gold mine environment and possible solution of cleaning up by using
phytoextraction. HAYATI Journal of Biosciences 16(3): 88-94.
Hilmi,
M., Hamim, Sulistyaningsih, Y.C. & Taufikurahman, T. 2018. Growth,
histochemical and physiological responses of non-edible oil producing plant (Reutealis
trisperma) to gold mine tailings. Biodiversitas Journal of Biological
Diversity 19(4): 1294-1302.
Hu,
J., Guo, H., Li, J., Gan, Q., Wang, Y. & Xing, B. 2017. Comparative impacts
of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environmental Pollution 221: 199-208.
Korte,
F., Spiteller, M. & Coulston, F. 2000. The cyanide leaching gold recovery
process is a nonsustainable technology with unacceptable impacts on ecosystems
and humans: The disaster in Romania. Ecotoxicology
and Environmental Safety 46(3): 241-245.
Kováčik,
P., Baran, A., Filová, A., Vician, M. & Hudec, J. 2014. Content changes of
assimilative pigments in leaves after fertilizer Mg-Titanit application. Acta
Fytotechnica et Zootechnica 17(2): 58-64.
Maksymiec,
W. 2007. Signaling responses in plants
to heavy metal stress. Acta Physiologiae Plantarum 29(3): 177-185.
Muddarisna,
N. & Krisnayanti, B.D. 2015. Selection of mercury accumulator plants for
gold mine tailing contaminated soils. Journal of Degraded and Mining Lands
Management 2(3): 341-346.
Muddarisna,
N., Krisnayanti, B.D., Utami, S.R. & Handayanto, E. 2013. The potential of
wild plants for phytoremediation of soil contaminated with mercury of gold
cyanidation tailings. Journal of Environmental Science, Toxicology and Food
Technology 4(1): 15-19.
Nazar,
R., Iqbal, N., Masood, A., Khan, M.I.R., Syeed, S. & Khan, N.A. 2012.
Cadmium toxicity in plants and role of mineral nutrients in its alleviation. American
Journal of Plant Sciences 3(10): 1476-1489.
Nazar,
R., Iqbal, N., Syeed, S. & Khan, N.A. 2011. Salicylic acid alleviates
decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur
assimilation and antioxidant metabolism differentially in two mungbean
cultivars. Journal of Plant Physiology 168(8): 807-815.
Ono,
K., Yamamoto, Y., Hachiya, A. & Matsumoto, H. 1995. Synergistic inhibition
of growth by aluminum and iron of tobacco (Nicotiana tabacum L.) cells
in suspension culture. Plant and Cell Physiology 36(1): 115-125.
Popova,
L.P., Maslenkova, L.T., Yordanova, R.Y., Ivanova, A.P., Krantev, A.P., Szalai,
G. & Janda, T. 2009. Exogenous treatment with salicylic acid attenuates
cadmium toxicity in pea seedlings. Plant Physiology and Biochemistry 47(3): 224-231.
Pranowo, D. & Herman, M. 2015. Potensi pengembangan kemiri
sunan (Reutealis trisperma (blanco) airy shaw) di lahan terdegredasi. Perspektif 14: 87-102.
Qureshi,
M.I., D’Amici, G.M., Fagioni, M., Rinalducci, S. & Zolla, L. 2010. Iron
stabilizes thylakoid protein-pigment
complexes in Indian mustard during Cd-phytoremediation as revealed by
BN-SDS-PAGE and ESI-MS/MS. Journal of Plant Physiology 167(10): 761-770.
Santos,
C.S., Roriz, M., Carvalho, S.M. & Vasconcelos, M.W. 2015. Iron partitioning
at an early growth stage impacts iron deficiency responses in soybean plants (Glycine
max L.). Frontiers in Plant Science 6: 325.
Sarwar,
N., Malhi, S.S., Zia, M.H., Naeem, A., Bibi, S. & Farid, G. 2010. Role of
mineral nutrition in minimizing cadmium accumulation by plants. Journal of
the Science of Food and Agriculture 90(6): 925-937.
Sarwar,
N., Imran, M., Shaheen, M.R., Ishaque, W., Kamran, M.A., Matloob, A., Rehim, A.
& Hussain, S. 2017. Phytoremediation strategies for soils contaminated with
heavy metals: Modifications and future perspectives.
Chemosphere 171: 710-721.
Savicka,
M. & Škute, N. 2010. Effects of high temperature on malondialdehyde
content, superoxide production and growth changes in wheat seedlings (Triticum
aestivum L.). Ekologija 56(1): 26-33.
Seth,
C.S. 2012. A review on mechanisms of plant tolerance and role of transgenic
plants in environmental clean-up. The Botanical Review 78(1): 32-62.
Seth,
C.S., Chaturvedi, P.K. & Misra, V. 2007. Toxic effect of arsenate and
cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.)
in response to its accumulation. Environmental Toxicology: An International
Journal 22(6): 539-549.
Setyaningsih,
L., Setiadi, Y., Budi, S.W. & Sopandie, D. 2017. Lead accumulation by jabon
seedling (Anthocephalus cadamba) on tailing media with application of
compost and arbuscular mycorrhizal fungi. IOP Conference Series: Earth and
Environmental Science 58(1): 012053.
Taiz,
L. & Zeiger, E. 2010. Plant Physiology. Third Edition.
Sunderland: Sinauer Associates.
Tessarin,
P., Ingrosso, E., Rombolà, A.D., Boliani, A.C., Covarrubias, J.I. & Yunta,
F. 2012. Improvement of grapevine iron nutrition by a bovine blood-derived
compound. VII International Symposium on Mineral Nutrition of Fruit Crops 984: 335-338.
Vamerali,
T., Bandiera, M. & Mosca, G. 2010. Field crops for phytoremediation of
metal-contaminated land. A review. Environmental Chemistry Letters 8(1):
1-17.
Wang,
M., Liu, X., Hu, J., Li, J. & Huang, J. 2015. Nano-ferric oxide promotes
watermelon growth. Journal of Biomaterials and Nanobiotechnology 6(03):
160-167.
Xu,
J., Yin, H. & Li, X. 2009. Protective effects of proline against cadmium
toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant
Cell Reports 28(2): 325-333.
Zornoza,
P., Sánchez-Pardo, B. & Carpena, R.O. 2010. Interaction and accumulation of
manganese and cadmium in the manganese accumulator Lupinus albus. Journal
of Plant Physiology 167(13): 1027-1032.
*Pengarang untuk surat-menyurat;
email: hamim@apps.ipb.ac.id
|