Sains Malaysiana 49(9)(2020): 2141-2148
http://dx.doi.org/10.17576/jsm-2020-4909-12
Lignin-Coated
Polystyrene/Trichloromethylsilane Absorbent for Oil Spill Cleanup
(Penyerap
Polistirena/Triklorometilsilana Bersalut Lignin untuk Pembersihan Tumpahan Minyak)
NUR
AMALINA AZHAR1, NADIA ADRUS1, WAN AIZAN WAN RAHMAN1 & ROHAH A. MAJID2*
1School
of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310
Skudai, Johor Darul Takzim, Malaysia
2Centre
for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 Skudai,
Johor Darul Takzim, Malaysia
Diserahkan:
16 Januari 2020/Diterima: 10 Mei 2020
ABSTRACT
The
study was conducted to determine the effectiveness of lignin-polystyrene/
trichloromethylsilane (TL-PS) absorbent in removing oil spillage from
wastewater. Lignin powder obtained from the delignification of oil palm empty
fruit bunch (OPEFB) was coated with PS emulsion (PSE) at various concentrations
(2, 4, 6, & 8 mL) in order to bind the powder into an aggregated form. Later,
L-PS was exposed to trichloromethylsilane
(TCMS) via chemical vapour deposition method (CVD) at fixed 7.5 min exposure
time to form TL-PS absorbent. The wettability of TL-PS was determined by
conducting water contact angle (WCA) measurement and oil sorption capacity. It
was found that TL-PS4 sample (immersed in 8 mL PSE) had the highest WCA value
(134.10°) and oil sorption capacity (52%) in comparison with L-PS4 (immersed in
8 mL PSE without TCMS) with WCA value of 99.10° and oil sorption capacity of
40%. Meanwhile, the disappearance of hydroxyl group (OH) at peak 3429 cm-1 and appearance of siloxane bonds (R-Si-O) at peak in range of 1000 - 1100 cm-1 and 3.9 - 4.0 ppm had confirmed the substitution occurred between these groups,
as shown by the spectra obtained from attenuated total reflectance-Fourier
transform infrared (ATR-FTIR) and nuclear magnetic resonance (NMR). Thermal
stability of TL-PS4 (onset degradation temperature at 252 °C) was higher when
compared with lignin (onset degradation temperature at 40 °C), as showed by the
thermogravimetric analysis (TGA). Meanwhile, the surface of absorbent had
change from smooth (L-PS4) to rough (TL-PS4) corresponding to the deposition of
silane particles onto the surface of L-PS after the exposure with TCMS, as shown
by the scanning electron microscopy (SEM). The results suggested that TL-PS has
a promising potential to be used as an absorbent for oil spill cleanup.
Keywords:
Chemical vapour deposition; lignin; oil spillage; polystyrene;
trichloromethylsilane
ABSTRAK
Kajian
ini telah dijalankan untuk menentukan keberkesanan serapan
lignin-polistirena/triklorometilsilana (TL-PS) dalam mengasingkan tumpahan
minyak daripada sisa air buangan. Serbuk lignin yang diperoleh daripada proses
nyahlignin tandan kosong kelapa sawit (OPEFB) telah disalut dengan emulsi PS
(PSE) pada kepekatan yang berlainan (2, 4, 6 & 8 mL) untuk mengikat serbuk
ke dalam bentuk bergumpal. Kemudian, L-PS didedahkan kepada triklorometilsilana
(TCMS) melalui kaedah pemendapan wap kimia (CVD) pada masa yang ditetapkan
iaitu 7.5 minit waktu pendedahan bagi menghasilkan penyerap TL-PS. Tahap
pembasahan TL-PS telah ditentukan dengan menggunakan pengukuran sudut permukaan
air (WCA) dan peratusan kapasiti penyerapan minyak. Bahan sampel TL-PS4 (yang
direndam di dalam 8 mL PSE) menunjukkan nilai WCA yang tertinggi (134.10º) dan
peratusan kapasiti minyak penyerapan meningkat kepada kira-kira 52% berbanding
dengan L-PS4 (direndam dalam 8 mL PSE tanpa TCMS) dengan nilai WCA bersamaan
99.10° dan kapasiti penyerapan minyak pada 40%. Sementara itu, penyingkiran
kumpulan hidrosil (OH) pada puncak 3429 cm-1 dan kehadiran ikatan
siloksana (R-Si-O) pada puncak dalam lingkungan 1000 - 1100 cm-1 dan
3.9 - 4.0 ppm mengesahkan penggantian telah berlaku antara kumpulan ini, seperti
yang ditunjukkan oleh spektra analisis spektroskopi inframerah (ATR-FTIR) dan
resonans magnetik nuklear (NMR). Kestabilan TL-PS terhadap suhu (suhu permulaan
degradasi pada 252.41 °C) adalah lebih tinggi apabila dibandingkan dengan
lignin (suhu permulaan degradasi pada 40 °C), seperti yang ditunjukkan oleh
analisis haba gravimetrik (TGA). Sementara itu, permukaan penyerap telah
bertukar dari permukaan yang licin (L-PS4) kepada permukaan yang kasar
(TL-PS) sepadan dengan pemendapan zarah silina ke permukaan L-PS selepas
terdedah kepada TCMS, seperti yang ditunjukkan oleh mikroskop pengimbasan
elektron (SEM). Keputusan ini mencadangkan bahawa TL-PS berpotensi untuk
digunakan sebagai penyerap bagi pembersihan tumpahan minyak.
Kata
kunci: Lignin; polisterina; teknik pemendapan wap kimia; triklorometilsilina;
tumpahan minyak
RUJUKAN
Anju,
V.P. & Narayanankutty, S.K. 2017. Impact of
Bis-(3-triethylsilylpropyl)tetrasulphide in the properties of PMMA/cellulose
composite. Polymer 119: 224-237.
Asim,
M., Abdan, K., Jawaid, M., Nasir, M., Dashtizaleh, Z., Ishak, M.R. & Hoque,
M.E. 2015. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science 2015(6): 1-16.
Azhar,
N.A., Rahman, W.A.W. & Majid, R.A. 2019. Lignin-treated-trichloromethylsilane
sorbent for oil spill cleanup. Journal of
Energy and Safety Technology 1(2): 43-49.
Babiker,
D.M.D., Zhu, L., Yagoub, H., Xu, X., Zhang, X., Shibraen, M.H.M.A. & Yang,
S. 2019. Hydrogen-bonded methylcellulose/poly(acrylic acid) complex membrane
for oil-water separation. Surface &
Coatings Technology 367: 49-57.
Bogdan,
A. & Kulmala, M. 2006. Encyclopedia
of Surface and Colloid Science. 2nd edition.
New York: Taylor & Francis.
Capelletto,
E., Callone, E., Campostrini, R., Girardi, F., Maggini, S., Volpe, C.D.,
Siboni, S. & Maggio, R.D. 2012. Hydrophobic siloxane paper coatings: The
effect of increasing methyl substitution. Journal
Sol-gel Science Technology. 62: 441-452.
Cunha,
A.G., Freire, C., Sivestre, A., Neto, C.P., Gandini, A., Belgacem, M.N.,
Chaussy, D. & Beneventi, D. 2010. Preparation of highly hydrophobic and
lipophobic cellulose fibers by a straightforward gas-solid reaction. Journal Colloid and Interface Science 344(2): 588-595.
Doshi,
B., Sillanpää, M. & Kalliola, S. 2018. A review of bio-based materials for
oil spill treatment. Water Research 135: 262-277.
Ghavidel,
F. & Fatehi, P. 2019. Synergistic effect of lignin incorporation into
polystyrene for producing sustainable superadsorbent. RSC Advances 9: 17639-17652.
Gupta,
R., Gupta, N. & Rathi, P. 2004. Bacterial lipases: An overview of
production, purification and biochemical properties. Application Microbiology Biotechnology 64(6): 763-781.
Kai,
D., Low, Z., Liow, S.S., Karim, A.A., Ye, H., Jin, G., Li, K. & Loh, X.J.
2015. Development of lignin supramolecular hydrogels with mechanically
responsive and self-healing properties. ACS
Sustainable Chemistry Engineering 3(9): 2160-2169.
Li,
H., Zhang, Q., Gao, P. & Wang, L. 2015. Preparation and characterization of
graft copolymer from dealkaline lignin and styrene. Journal of Applied Polymer Science 132(17): 1-9.
Li,
S.H., Zhang, S.B. & Wang, X.H. 2008. Fabrication of superhydrophobic
cellulose-based materials through a solution-immersion process. Langmuir 24(10): 5585-5590.
Liu,
F., Ma, M., Zang, D., Gao, Z. & Wang, C. 2014. Fabrication of
superhydrophobic/superoleophilic cotton for application in the field of
water/oil seperation. Carbohydrates
Polymers 103: 480-487.
Liu,
Y., Liu, N., Jing, Y., Jiang, Y., Yu, L. & Yan, X. 2019. Surface design of
durable and recyclable superhydrophobic materials for oil/water separation. Colloids and Surfaces A 567: 128-138.
Michel,
J. & Fingas, M. 2016. Oil spills: Causes, consequences, prevention and
counter measure. In Fossil Fuels, edited
Crawley, G.M. Singapore: World Scientific Publishing Company. pp. 159-201.
Oribayo,
O., Feng, X., Rempel, G.L. & Pan, Q. 2017. Synthesis of lignin-based
polyurethane/graphene oxide foam and its application as an absorbent for oil
spill clean-ups and recovery. Chemical
Engineering Journal 323: 191-202.
Pour,
F.Z., Karimi, H. & Avargani, V.M. 2019. Preparation of a superhydrophobic
and superoleophilic polyester textile by chemical vapor deposition of
dichloromethylsilane for water-oil separation. Polyhedron 159: 54-63.
Salon,
M.B., Abdelmouleh, M., Boufi, S., Belgacem, M.N. & Gandini, A. 2005. Silane
adsorption onto cellulose fibers: Hydrolysis and condensation reactions. Journal of Colloid and Interface Science 289(1): 249-261.
Tejado,
A., Chen, W.C., Abim, M.N. & van de Ven, T.G.M. 2014. Superhydrophobic
foam-likecellulose made of hydrophobized cellulose fibres. Cellulose 21: 1735-1743.
Vince,
J., Vilcknik, B.A., Fir, M., Vuk, A.S., Jovanovski, V. & Simoncic, B. 2006.
Structural and water-repellent properties of a urea/poly(dimethylsiloxane)
sol-gel hybrid and its bonding to cotton fabric. Langmuir 22(15): 6489-6497.
Wang,
J., Zheng, Y. & Wang, A. 2013. Coated kapok fiber for removal of spilled
oil. Marine Bulletin 69(1-2): 91-96.
Wang,
J., Zheng, Y. & Wang, A. 2012. Superhydropobic kapok fiber oil-absorbent:
Preparation and high oil absorbency. Chemical
Engineering Journal 213: 1-7.
Yang,
J., Li, H., Lan, T., Peng, L., Cui, R. & Yang, H. 2017. Preparation,
characterization, and properties of fluorine-free superhydrophobic paper based
on layer-by-layer assembly. Carbohydrate
Polymers 178: 228-237.
Yi,
Y., Yang, Z. & Zhang, S. 2011. Ecological risk assessment of heavy metals
in sodiment and human health risk assessment of heavy metals in fishes in the
middle and lower reacher of the Yangtze River basin. Environmental Pollution 159(10): 2575-2585.
Yuan,
J., Gao, R., Wang, Y., Cao, W., Dong, B. & Dou, J. 2018. A novel
hydrophobic adsorbent of electrospun SiO2@MUF/PAN nanofibrous
membrane and its adsorption behaviour for oil and organic solvents. Journal Material Science 53:
16357-16370.
Zhang,
T., Li, Z., Lü, Y., Liu, Y., Yang, D., Li, Q. & Qiu, F. 2018. Recent
progress and future prospects of oil-absorbing materials. Chinese Journal of Chemical Engineering 27(6): 1282-1295.
Zhang,
Z., Zhang, Y., Lin, Z., Mulyadi, A., Mu, W. & Deng, Y. 2017. Butryric anhydride
modified lignin and its oil-water interfacial properties. Chemical Engineering Science 165: 55-64.
*Pengarang untuk surat-menyurat;
email: r-rohah@utm.my
|