Sains Malaysiana 49(9)(2020): 2169-2185

http://dx.doi.org/10.17576/jsm-2020-4909-15

 

Non- Isothermal Crystallization Kinetics of Poly(Lactic Acid)/Kenaf Fiber Composites

(Kinetik Penghabluran bukan Isoterma Komposit Poli(Laktik Asid)/Serat Kenaf)

 

ADIBAH BORHAN & RAZAINA MAT TAIB*

 

School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

Diserahkan: 15 Oktober 2019/Diterima: 8 Mei 2020

 

Abstract

The non-isothermal crystallization behavior of poly(lactic acid) (PLA)/kenaf fiber (KF) composites was investigated using differential scanning calorimetry (DSC) at different cooling rates (1, 2.5, 5, and 7.5 °C/min) with various KF sizes from 25 to 300 µm. The modified Avrami, Ozawa, and Mo methods were applied to study the non-isothermal crystallization kinetics of neat PLA and PLA/KF composites. It was found that KF size of 80-106 µm acts as nucleating agent during non-isothermal crystallization of PLA/KF composites since the values of half-time of crystallization (t1/2) of PLA80 were the fastest as compared to neat PLA and other PLA/KF composites at a given cooling rate. The Avrami-Jeziorny crystallization rate constant (Zc) increased upon increased of cooling rates for both neat PLA and PLA/KF composites indicating the improvement in crystallization. However, only the Zc values for PLA80 were faster than PLA/KF composites but slower than neat PLA at a certain cooling rate. The Ozawa method did not apply satisfactorily for both neat PLA and PLA/KF composites. Meanwhile, the results showed that the Mo method can be successfully applied by providing a good fitting for all cooling rates of neat PLA and PLA/KF composites. The Kissinger activation energy (ΔE) of PLA80 recorded the lowest value indicating the size of KF between 80-106 µm accelerated the non-crystallization of PLA.

 

Keywords: Differential scanning calorimetry; kenaf fiber; non-isothermal crystallization; poly(lactic acid)

 

Abstrak

Tingkah laku penghabluran bukan isoterma komposit poli(laktik asid) (PLA)/serat kenaf (KF) dikaji dengan menggunakan kalorimetri pengimbasan perbezaan (DSC) pada kadar pendinginan yang berbeza (1, 2.5, 5 dan 7.5 °C/min) dalam pelbagai saiz KF daripada 25 hingga 300 μm. Kaedah Avrami diubah suai, Ozawa, dan Mo digunakan untuk mengkaji kinetik penghabluran bukan isoterma PLA tulen dan komposit PLA/KF. Telah didapati bahawa saiz KF 80-106 μm bertindak sebagai agen nukleasi semasa penghabluran bukan isoterma komposit PLA/KF kerana nilai-nilai separuh masa penghabluran (t1/2) PLA80 adalah terpantas berbanding dengan PLA tulen dan PLA/KF komposit mengikut kadar pendinginan yang diberikan. Kadar tetap penghabluran Avrami-Jeziorny (Zc) meningkat apabila peningkatan kadar pendinginan untuk kedua-dua PLA tulen dan komposit PLA/KF menunjukkan peningkatan dalam penghabluran. Walau bagaimanapun, nilai Zc untuk PLA80 lebih cepat daripada komposit PLA/KF tetapi lebih perlahan daripada PLA tulen pada kadar pendinginan tertentu. Kaedah Ozawa tidak menunjukkan penerapan yang baik untuk PLA tulen dan komposit PLA/KF. Sementara itu, keputusan menunjukkan bahawa kaedah Mo dapat diterapkan dengan berkesan dengan menunjukkan garisan yang kemas bagi semua kadar pendingin PLA tulen dan komposit PLA/KF. Pengaktifan Kissinger (ΔE) PLA80 mencatatkan nilai terendah yang menunjukkan saiz KF antara 80-106 µm mempercepatkan penghabluran semula PLA.

 

Kata kunci: Kalorimetri pengimbasan perbezaan; penghabluran bukan isoterma; poli(laktik asid); serat kenaf

 

RUJUKAN

Akhtar, M.N., Sulong, A.B., Radzi, M.F., Ismail, N.F., Raza, M.R., Muhamad, N. & Khan, M.A. 2016. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials International 26(6): 657-664.

Avérous, L. 2008. Polylactic acid: Synthesis, properties and applications. In Monomers, Polymers and Composites from Renewable Resources. New York: Elsevier. pp. 433-450.

Bai, Z.F. & Dou, Q. 2016. Non-isothermal crystallization kinetics of polypropylene/poly (lactic acid)/maleic anhydride-grafted polypropylene blends. Journal of Thermal Analysis and Calorimetry 126(2): 785-794.

Bin, T., Qu, J.P., Liu, L.M., Feng, Y.H., Hu, S.X. & Yin, X.C. 2011. Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly (butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochimica Acta 525(1-2): 141-149.

Bouzouita, A., Samuel, C., Notta‐Cuvier, D., Odent, J., Lauro, F., Dubois, P. & Raquez, J.M. 2016. Design of highly tough poly (l‐lactide)‐based ternary blends for automotive applications. Journal of Applied Polymer Science 133(19): 43402.

Chen, P.Y., Lian, H.Y., Shih, Y.F., Chen-Wei, S.M. & Jeng, R.J. 2017. Preparation, characterization and crystallization kinetics of kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Materials Chemistry and Physics 196: 249-255.

Chung, T.J., Park, J.W., Lee, H.J., Kwon, H.J., Kim, H.J., Lee, Y.K. & Tai, Y.T.W. 2018. The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation. Applied Sciences 8(3): 376.

Coburn, N., Douglas, P., Kaya, D., Gupta, J. & McNally, T. 2018. Isothermal and non-isothermal crystallization kinetics of composites of poly (propylene) and MWCNTs. Advanced Industrial and Engineering Polymer Research 1(1): 99-110.

Elsawy, M.A., Kim, K.H., Park, J.W. & Deep, A. 2017. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews 79: 1346-1352.

El-Shekeil, Y.A., Salit, M.S., Abdan, K. & Zainudin, E.S. 2011. Development of a new kenaf bast fiber-reinforced thermoplastic polyurethane composite. BioResources 6(4): 4662-4672.

Gorrasi, G. & Pantani, R. 2013. Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: Assessment of structural modification and kinetic parameters. Polymer Degradation and Stability 98(5): 1006-1014.

Ho, M.P., Lau, K.T., Wang, H. & Hui, D. 2015. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Composites Part B: Engineering 81: 14-25.

Jain, S., Misra, M., Mohanty, A.K. & Ghosh, A.K. 2012. Thermal, mechanical and rheological behavior of poly (lactic acid)/talc composites. Journal of Polymers and the Environment 20(4): 1027-1037.

Jalali, A., Huneault, M.A. & Elkoun, S. 2017. Effect of molecular weight on the nucleation efficiency of poly (lactic acid) crystalline phases. Journal of Polymer Research 24(11): 182.

Jin, X., Chen, X., Cheng, Q., Zhang, N., Cai, S. & Ren, J. 2017. Non-isothermal crystallization kinetics of ramie fiber-reinforced polylactic acid biocomposite. RSC Advances 7(73): 46014-46021.

Jonoobi, M., Harun, J., Mathew, A.P. & Oksman, K. 2010. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites Science and Technology 70(12): 1742-1747.

Kim, H.S., Park, B.H., Choi, J.H. & Yoon, J.S. 2008. Mechanical properties and thermal stability of poly (L‐lactide)/calcium carbonate composites. Journal of Applied Polymer Science 109(5): 3087-3092.

Kowalczyk, M., Piorkowska, E., Kulpinski, P. & Pracella, M. 2011. Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Composites Part A: Applied Science and Manufacturing 42(10): 1509-1514.

Layachi, A., Frihi, D., Satha, H., Seguela, R. & Gherib, S. 2016. Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites. Journal of Thermal Analysis and Calorimetry 124(3): 1319-1329.

Lee, S.H. & Wang, S. 2006. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing 37(1): 80-91.

Li, J., Li, J., Feng, D., Zhao, J., Sun, J. & Li, D. 2017. Excellent rheological performance and impact toughness of cellulose nanofibers/PLA/ionomer composite. RSC Advances 7(46): 28889-28897.

Lin, W.Y., Shih, Y.F., Lin, C.H., Lee, C.C. & Yu, Y.H. 2013. The preparation of multi-walled carbon nanotube/poly (lactic acid) composites with excellent conductivity. Journal of the Taiwan Institute of Chemical Engineers 44(3): 489-496.

Masirek, R., Kulinski, Z., Chionna, D., Piorkowska, E. & Pracella, M. 2007. Composites of poly (L‐lactide) with hemp fibers: Morphology and thermal and mechanical properties. Journal of Applied Polymer Science 105(1): 255-268.

Meng, Z., Yang, L., Geng, W., Yao, Y., Wang, X. & Liu, Y. 2014. Kinetic study on the isothermal and nonisothermal crystallization of monoglyceride organogels. The Scientific World Journal 2014: Article ID. 149753.

Myoung, S.H., Im, S.S. & Kim, S.H. 2016. Non‐isothermal crystallization behavior of PLA/acetylated cellulose nanocrystal/silica nanocomposites. Polymer International 65(1): 115-124.

Notta-Cuvier, D., Odent, J., Delille, R., Murariu, M., Lauro, F., Raquez, J.M., Bennani, B. & Dubois, P. 2014. Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing 36: 1-9.

Pan, P., Zhu, B., Kai, W., Dong, T. & Inoue, Y. 2008. Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly (L‐lactide). Journal of Applied Polymer Science 107(1): 54-62.

Pan, P., Zhu, B., Kai, W., Serizawa, S., Iji, M. & Inoue, Y. 2007. Crystallization behavior and mechanical properties of bio‐based green composites based on poly (L‐lactide) and kenaf fiber. Journal of Applied Polymer Science 105(3): 1511-1520.

Petinakis, E., Yu, L., Edward, G., Dean, K., Liu, H. & Scully, A.D. 2009. Effect of matrix-particle interfacial adhesion on the mechanical properties of poly (lactic acid)/wood-flour micro-composites. Journal of Polymers and the Environment 17(2): 83-94.

Ren, Z., Dong, L. & Yang, Y. 2006. Dynamic mechanical and thermal properties of plasticized poly (lactic acid). Journal of Applied Polymer Science 101(3): 1583-1590.

Rinawa, K., Maiti, S.N., Sonnier, R. & Cuesta, J.L. 2015. Non-isothermal crystallization kinetics and thermal behaviour of PA12/SEBS-g-MA blends. Bulletin of Materials Science 38(5): 1315-1327.

Saeidlou, S., Huneault, M.A., Li, H., Sammut, P. & Park, C.B. 2012. Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes. Polymer 53(25): 5816-5824.

Silverajah, V.S., Ibrahim, N.A., Yunus, W.M.Z.W., Hassan, H.A. & Woei, C.B. 2012. A comparative study on the mechanical, thermal and morphological characterization of poly (lactic acid)/epoxidized palm oil blend. International Journal of Molecular Sciences 13(5): 5878-5898.

Suryanegara, L., Nakagaito, A.N. & Yano, H. 2009. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology 69(7-8): 1187-1192.

Volpe, V., De Filitto, M., Klofacova, V., De Santis, F. & Pantani, R. 2018. Effect of mold opening on the properties of PLA samples obtained by foam injection molding. Polymer Engineering & Science 58(4): 475-484.

Xiao, H., Yang, L., Ren, X., Jiang, T. & Yeh, J.T. 2010. Kinetics and crystal structure of poly (lactic acid) crystallized nonisothermally: Effect of plasticizer and nucleating agent. Polymer Composites 31(12): 2057-2068.

Yu, T., Hu, C., Chen, X. & Li, Y. 2015. Effect of diisocyanates as compatibilizer on the properties of ramie/poly (lactic acid)(PLA) composites. Composites Part A: Applied Science and Manufacturing 76: 20-27.

Yusoff, R.B., Takagi, H. & Nakagaito, A.N. 2016. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops and Products 94: 562-573.

Zaldua, N., Mugica, A., Zubitur, M., Iturrospe, A., Arbe, A., Re, G.L., Raquez, J.M., Dubois, P. & Müller, A.J. 2016. The role of PLLA-g-montmorillonite nanohybrids in the acceleration of the crystallization rate of a commercial PLA. CrystEngComm 18(48): 9334-9344.

Zamri, M.H., Md Akil, H., Mohd Ishak, Z.A. & Abu Bakar, A. 2015. Effect of different fiber loadings and sizes on pultruded kenaf fiber reinforced unsaturated polyester composites. Polymer Composites 36(7): 1224-1229.

 

*Pengarang untuk surat-menyurat; email: razaina@usm.my

 

     

 

sebelumnya