Sains Malaysiana 49(9)(2020): 2281-2291

http://dx.doi.org/10.17576/jsm-2020-4909-25

 

Crack-Healing Investigation in Asphalt Mixture with Modified Thermoplastic-Bitumen Composite

(Kajian Pemulihan-Keretakan dalam Campuran Asfalt dengan Termoplastik Terubah Suai - Komposit Bitumen)

 

MOHD SUZEREN MD JAMIL, WAN NAQIUDDIN WAN ZULRUSHDI* & NOOR NABILAH MUHAMAD

 

Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 15 Oktober 2019/Diterima: 18 Jun 2020

 

ABSTRACT

This study aims to investigate the crack-healing of asphalt mixture by induction heating of bitumen-thermoplastic binder. This system employs a heterogeneous mixture, in which different percentages (2, 4, 6, and 8% by weigh) of thermoplastic healing agent (polyethylene (PE) and polypropylene (PP)) dissolve with the bitumen, respectively. Healing was achieved by heating the fractured asphalt composite to a specific temperature; in which heterogeneous blend has undergone random molecule diffusion and volumetric thermal expansion of healing agent within the matrix. The thermal properties in the bitumen-thermoplastic were characterized by means of dynamic mechanical thermal analysis (DMTA); in which the glass transition temperature (Tg) has been used as a reference for the healing process. The FTIR shows no chemical reaction between bitumen and thermoplastic. Three-point bending test was conducted to demonstrate details crack-healing capability in asphalt composite. The results show that 6% of PE and PP to the mixture of bitumen-thermoplastic has the highest tensile strength. The percentage of recovery was also measured through the healing cycle process using a three-point bending test. Overall, within the third healing cycle, asphalt composite with modified bitumen (with PP or PE) shows 98-55% of healing recovery. The best percentage recovery is using bitumen-PP mixture with a ratio of 94:6. The crack-healing process was also proven through the surface and cross-section asphalt morphology analyses using optical microscopy and scanning electron microscope (SEM).

 

Keywords: Asphalt; bitumen-thermoplastic; crack healing; healing agent

 

ABSTRAK

Fokus kajian ini adalah untuk mengkaji kesan pemulihan keretakan bagi campuran asfalt melalui proses pemanasan pada pengikat bitumen-termoplastik. Sistem ini menggunakan campuran heterogen; agen pemulihan termoplastik (polietilena (PE) dan polipropilena (PP)) dengan peratusan yang berbeza (2, 4, 6 dan 8% keseluruhan berat) dicampurkan bersama bitumen. Pemulihan dapat dicapai melalui pemanasan komposit asfalt yang mengalami keretakan pada suhu tertentu; campuran heterogen ini akan melalui proses penyebaran molekul secara rawak dan pengembangan volumetrik termal agen pemulihan dalam matriks. Sifat termal untuk bitumen-termoplastik dapat dicirikan melalui analisis haba mekanik dinamik (DMTA); suhu peralihan kaca (Tg) telah digunakan sebagai rujukan bagi proses pemulihan. FTIR menunjukkan tiadanya interaksi kimia antara bitumen dan termoplastik. Ujian lenturan tiga titik dijalankan untuk membuktikan keupayaan pemulihan retak dalam komposit asfalt. Keputusan kekuatan tegangan yang tertinggi ditunjukkan bagi campuran bitumen-termoplastik dengan 6% PE atau PP. Peratusan pemulihan juga diukur melalui proses kitaran pemulihan menggunakan ujian lenturan tiga titik.  Secara keseluruhan, komposit asfalt dengan bitumen yang diubah suai (dengan PP atau PE) menunjukkan 98-55% pemulihan keretakan berdasarkan tiga kitaran pemulihan. Peratusan pemulihan yang terbaik dapat dicapai dengan menggunakan campuran bitumen-PP dengan nisbah 94:6. Proses pembaikan retak juga telah dibuktikan melalui analisis morfologi asfalt permukaan dan keratan rentas menggunakan mikroskop optik dan mikroskopi elektron pengimbasan (SEM).

 

Kata kunci: Agen pemulihan; asfalt; bitumen-termoplastik; pembaikan retak

 

RUJUKAN

ASTM E647. 2000. Standard Test Method for Measurement of Fatigue Crack Growth Rates. American Society for Testing and Materials (ASTM).

Blaiszik, B.J., Kramer, S.L., Olugebefola, S.C., Moore, J.S., Sottos, N.R. & White, S.R. 2010. Self-healing polymers and composites. Annual Review of Materials Research 40: 179-211.

Bode, T.A. 2012. An analysis of the impacts of temperature segregation on hot mix asphalt. University of Nebraska-Lincoln. MS Thesis (Unpublished).

Chuo T.W. & Liu, Y.L. 2013. Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polymer Chemistry 4(7): 2194-2205.

Cui, S., Blackman, B.R., Kinloch, A.J. & Taylor, A.C. 2014. Durability of asphalt mixtures: Effect of aggregate type and adhesion promoters. International Journal of Adhesion and Adhesives 54: 100-111.

Garcia, S.J. 2014. Effect of polymer architecture on the intrinsic self-healing character of polymers. European Polymer Journal 53: 118-125.

Garcia, A., Schlangen, E. & Van de Ven, M. 2010. Two ways of closing cracks on asphalt concrete pavements: Microcapsules and induction heating. Key Engineering Materials 417: 573-576.

Hashemian, L., Kavussi, A. & Aboalmaali, H.H. 2014. Application of foam bitumen in cold recycling and hydrated lime in airport pavement strengthening. Case Studies in Construction Materials 1: 164-171.

Herbst, F., Döhler, D., Michael, P. & Binder, W.H. 2013. Self-healing polymers via supramolecular forces. Macromolecular Rapid Communications 34(3): 203-220.

Huan, Y., Jitsangiam, P. & Nikraz, H. 2011. Effects of active filler selection on foamed bitumen mixture in Western Australia. Applied Mechanics and Materials 90: 457-465. 

Imato, K., Nishihara, M., Kanehara, T., Amamoto, Y., Takahara, A. & Otsuka, H. 2012. Self‐healing of chemical gels cross‐linked by diarylbibenzofuranone‐based trigger‐free dynamic covalent bonds at room temperature. Angewandte Chemie 51(5): 1138-1142.

Jahromi, S.G., Vossough, S., Andalibizade, B. & Smith, B. 2014. Fatigue and low temperature fracture in bitumen mastic. Petroleum Science and Technology 32(3): 267-273.

Lv, D.W., He, J. & Sun, X.L. 2014. Indoor study on road performance of macromolecule polymer bitumen waterproof and cohesive layer (PCMA). Advanced Materials Research 912-914: 172-177.

Meure, S., Varley, R.J., Wu, D.Y., Mayo, S., Nairn, K. & Furman, S. 2012. Confirmation of the healing mechanism in a mendable EMAA-epoxy resin. European Polymer Journal 48(3): 524-531.

Nahar, S.N., Schmets, A.J.M., Scarpas, A. & Schitter, G. 2014. Microstructural changes in bitumen at the onset of crack formation. European Polymer Journal 56: 17-25.

Rapp, G., Tireau, J., Bussiere, P.O., Chenal, J.M., Rousset, F., Chazeau, L., Gardette, J.L. & Therias, S. 2019. Influence of the physical state of a polymer blend on thermal ageing. Polymer Degradation and Stability 163: 161-173.

Rubinstein, A., Moradov, D., Shifrin, H., Harel, E., Nadler-Milbauer, M., Weinstock, M. & Srebnik, M. 2015. The anti-inflammatory activity of a novel fused-cyclopentenone phosphonate and its potential in the local treatment of experimental colitis. gastroenterology research and practice. Gastroenterol. Res. Pract. 2015: Article ID. 939483.

Smith, B., Jahromi, S.G., Vossough, S. & Andalibizade, B. 2014. Fatigue and low temperature fracture in bitumen mastic. Petroleum Science and Technology 32(3): 267-273.

White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S. & Kessler, M.R. 2001. Autonomic healing of polymer composite. Nature Research Journal 409: 794-797.

Yang, P., Cong, Q. & Liao, K. 2003. Application of solubility parameter theory in evaluating the aging resistance of paving asphalts. Petroleum Science and Technology 21(11-12): 1843-1850.

Yuanita, E., Hendrasetyawan, B.E., Firdaus, D.F. & Chalid, M. 2017. Improvement of polypropylene (PP)-modified bitumen through lignin addition. IOP Conference Series: Materials Science and Engineering 223: 012028.

Zhang, P. & Li, G. 2016. Advances in healing-on-demand polymers and polymer composites. Progress in Polymer Science 57: 32-63.

Zheng, Z., Du, P., Liu, X., Wang, X., Joncheray, T. & Zhang, Y. 2013. Synthesis and characterization of linear self-healing polyurethane based on thermally reversible diels-alder reaction. RSC Advances 3(35): 15475-15482.

 

*Pengarang untuk surat-menyurat; email: wan.naqiuddin94@gmail.com

 

 

 

           

sebelumnya