Sains
Malaysiana 49(9)(2020): 2269-2279
http://dx.doi.org/10.17576/jsm-2020-4909-24
Improving
Rate of Gelatin/Carboxymethylcellulose Dissolving Microneedle for Transdermal
Drug Delivery
(Penambah Baik Kadar Larutan Jarum Mikro
Gelatin/Karboksimetilselulosa untuk Penghantaran Ubat Transdermal)
NUR
AFIQAH MUSTAFA KAMAL1, TUAN MAZLELAA TUAN MAHMOOD3, ISHAK
AHMAD1,2 & SURIA RAMLI1,2*
1Department of Chemical Sciences, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Polymer Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
3Drug and Herbal Development Centres, Faculty
of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Sultan Abdul Aziz, 50300
Kuala Lumpur, Federal Territory, Malaysia
Diserahkan:
15 Oktober 2019/Diterima: 8 Mei 2020
ABSTRACT
Gelatin
has been widely used as a nature-derived biopolymer material due to its high
biocompatibility and abundance. However, multiple fabrication steps for the
moulding process may limit its application to microneedle technology as
biomedical application. This research focused on physical, chemical, and
mechanical characteristics of gelatin-based dissolving microneedle (DMN) by
adding in various concentrations of carboxymethylcellulose.
Carboxymethylcellulose (CMC) derived from kenaf bast fibre were extracted by
alkaline treatment and esterification process, followed by fabrication of DMN
with gelatin using centrifuge-casting method. The formulation of G/CMC6
demonstrated the highest mechanical strength of 11.2 N by texture analyzer;
hence, G/CMC6 was chosen for further investigate of its intra- and
intermolecular bond, amorphous study, and its geometry by Fourier Transform
Infrared (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscopy
(SEM). FTIR showed various chemical interactions involved including hydrogen
bonding, dipole-dipole and charge effect. The XRD result shows amorphous peak
of gelatin decreased at 2θ = 20 - 21° with the addition of CMC. The height
of microneedle arrays also decreased from its micromould by 36.7% due to
agglomeration of CMC. Considering the biodegradability and the improvement of
gelatin-based DMN mechanical properties by carboxymethylcellulose, the
combination of gelatin and CMC is one of great potential for delivering drugs
using microneedle.
Keywords:
CMC; dissolving microneedle; gelatin; mechanical characteristics
ABSTRAK
Gelatin
digunakan secara meluas sebagai sumber terbitan biopolimer semula jadi kerana
sifatnya yang tinggi biokeserasian. Walau bagaimanapun, kaedah fabrikasi
berganda bagi proses acuan dalam aplikasi teknologi jarum mikro adalah terhad.
Kajian ini memfokus kepada sifat kimia, fizikal dan mekanikal jarum mikro
terlarut (DMN) berasaskan gelatin dengan penambahan pelbagai variasi kepekatan
selulosa karboksimetil (CMC). CMC yang digunakan merupakan terbitan daripada
serabut kenaf yang diekstrak oleh rawatan alkali dan proses esterifikasi,
kemudiannya gelatin dan variasi kepekatan CMC digunakan untuk memfabrikasikan
jarum mikro terlarut dengan menggunakan kaedah tuangan-emparan. Formulasi
G/CMC6 telah menunjukkan kekuatan mekanikal jarum mikro tertinggi dengan 11.2 N
oleh analisis tekstur. Oleh itu, G/CMC6 dipilih untuk mengkaji ikatan intra-
dan intermolekul, amorfus dan geometri menggunakan instrumentasi analisis
spektroskopi transformasi Fourier infra merah (FTIR), pembelauan X-ray (XRD)
dan mikroskopi imbasan elektron (SEM). FTIR menunjukkan terdapat interaksi
kimia berlaku yang melibatkan ikatan hidrogen, dwikutub dan kesan cas.
Keputusan XRD pula menunjukkan puncak amorfus gelatin semakin menurun pada
2θ = 20 - 21° dengan penambahan CMC. Panjang jarum mikro pula berkurangan
semasa proses pengeringan, iaitu berkurangan sebanyak 36.7% daripada acuan atas
faktor aglomerasi oleh CMC. Kajian ini telah membuktikan bahawa biodegradasi
dan peningkatan mekanikal jarum mikro berasaskan gelatin dan CMC salah satu
potensi untuk menghantar ubat dalam bidang farmaseutis.
Kata
kunci: CMC; gelatin; jarum mikro; terlarut; sifat mekanikal
RUJUKAN
Ali, N.H., Amin, M.C.I.M. & Ng, S.F.
2019. Sodium carboxymethyl cellulose hydrogels containing reduced graphene
oxide (rGO) as a functional antibiofilm wound dressing. Journal of
Biomaterials Science, Polymer Edition 30(8): 629-645.
Atef, M., Rezaei, M. & Behrooz, R.
2014. Preparation and characterization agar-based nanocomposite film reinforced
by nanocrystalline cellulose. International Journal of Biological
Macromolecules 70: 537-544.
Barry, B. 2001. Novel mechanisms and
devices to enable successful transdermal drug delivery. European
Journal of Pharmaceutical Sciences 14: 101-114.
Bono, A., Ying, P.H., Yan, F.Y., Muei,
C.L., Sarbatly, R. & Krishnaiah, D. 2009. Synthesis and characterization of
carboxymethyl cellulose from palm kernel cake. Advance Nature Apploed Sciecnce 3(1): 5-11.
Chai, M.N. & Isa, M.I.N. 2013. The
oleic acid composition effect on the carboxymethyl cellulose based biopolymer
electrolyte. Journal Crystallization Process Technology 3: 1-4.
Chen, M.C., Ling, M.H., Lai, K.Y. & Pramudityo, E. 2012.
Chitosan microneedle patches for sustained transdermal delivery of
macromolecules. Biomacromolecules 13(12): 4022-4031.
Dangol, M., Yang, H., Li, C.G., Lahiji,
S.F., Kim, S., Ma, Y. & Jung, H. 2016. Innovative polymeric system (IPS)
for solvent-free lipophilic drug transdermal delivery via DMNs. Journal of
Controlled Release 223: 118-125.
Esteghlal, S., Niakousari, M. &
Hosseini, S.M.H. 2018. Physical and mechanical properties of gelatin-CMC
composite films under the influence of electrostatic interactions. International
Journal of Biological Macromolecules 114: 1-9.
Hosseini, S.F., Rezaei, M., Zandi, M.
& Ghavi, F.F. 2013. Preparation and functional properties of fish
gelatin-chitosan blend edible films. Food Chemistry 136(3-4): 1490-1495.
Hu, D., Wang, H. & Wang, L. 2016.
Physical properties and antibacterial activity of quaternized
chitosan/carboxymethyl cellulose blend films. LWT- Food Science and
Technology 65: 398-405.
Hube, M.A., Ferrer, A., Tyagi, P., Yin,
Y., Salas, C., Pal, L. & Rojas, O.J. 2017. Nanocellulose in thin films,
coatings, and plies for packaging applications: A review. BioResources12(1): 2143-2233.
Ishak, M.R., Leman, Z., Sapuan, S.M.,
Edeerozey, A.M.M. & Othman, I.S. 2010. Mechanical properties of kenaf bast
and core fibre reinforced unsaturated polyester composites. IOP Conference
Series: Material Science Engineering 11: 012006.
Ito, Y., Hirono, M., Fukushima, K., Sugioka, N. & Takada, K.
2012. Two-layered DMNs formulated with intermediate-acting insulin. International
Journal of Pharmaceutics 436(1-2): 387-393.
Hazirah, M.N., Isa, M.I.N. & Sarbon,
N.M. 2016. Effect of xanthan gum on the physical and mechanical properties of
gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf Life 9: 55-63.
Jafirin, S., Ahmad, I. & Ahmad, A. 2014. Carboxymethyl
cellulose from kenaf reinforced composite polymer electrolytes based 49%
poly(methyl methacrylate)-grafted natural rubber. Malaysian Journal of
Analytical Sciences 18(2): 376-384.
Jahit, I.S., Nazmi, N.N.M., Isa, M.I.N.
& Sarbon, N.M. 2016. Preparation and physical properties of
gelatin/CMC/chitosan composite films as affected by drying temperature. International
Food Research Journal 23(3): 1068-1074.
Kamath, M.G., Bhat, G.S., Parikh, D.V.
& Mueller, D. 2005. Cotton fiber nonwovens for automotive composites. International
Nonwovens Journal. doi/10.1177/1558925005os-1400105.
Kumsah, C.A., Pass, G. & Phillips,
G.O. 1976. The interaction between sodium carboxymethylcellulose and water. Journal
of Solution Chemistry 5(11): 799-806.
Lai, J.Y. 2010. Biocompatibility of
chemically cross-linked gelatin hydrogels for ophthalmic use. Journal of
Material Science: Materials in Medicine 21(6): 1899-1911.
Lan, W., He, L. & Liu, Y. 2018.
Preparation and properties of sodium carboxymethyl cellulose/sodium
alginate/chitosan composite film. Coatings 8(8): 291.
Marques, N.D.N., Balaban, R.D.C., Halila,
S. & Borsali, R. 2018. Synthesis and characterization of carboxymethylcellulose
grafted with thermoresponsive side chains of high LCST: The high temperature
and high salinity self-assembly dependence. Carbohydrate Polymers 184:
108-117.
Naik, A., Kalia, Y.N. & Guy, R.H.
2000. Transdermal drug delivery: Overcoming the skin’s barrier function. Pharmaceutical
Science & Technology Today 3: 318-326.
Naito, S., Ito, Y., Kiyohara, T., Kataoka, M., Ochiai, M. &
Takada, K. 2012. Antigen-loaded DMN array as a novel tool for percutaneous
vaccination. Vaccine 30(6): 1191-1197.
Nazmi, N.N., Isa, M.I.N. & Sarbon,
N.M. 2017. Preparation and characterization of chicken skin gelatin/CMC
composite film as compared to bovine gelatin film. Food Bioscience 19:
149-155.
Pan, J., Ruan, W., Qin, M., Long, Y., Wan,
T., Yu, K., Zhai, Y., Wu, C. & Xu, Y. 2018. Intradermal delivery of STAT3
siRNA to treat melanoma via DMNs. Scientific Reports 8: 1117.
Park, D., Park, H., Seo, J. & Lee, S. 2014.
Sonophoresis in transdermal drug deliverys. Ultrasonics 54:
56-65.
Prausnitz, M.R. & Langer, R. 2008.
Transdermal drug delivery. Nature Biotechnology 26(11): 1261-1268.
Qi, X.M., Liu, S.Y., Chu, F.B., Pang, S., Liang, Y.R.,
Guan, Y. & Sun, R.C. 2015. Preparation and characterization of blended
films from quaternized hemicelluloses and carboxymethyl cellulose. Mater 9(1): 4.
Rahman, N.A., Kamarudin, N.S., Esaa, F.,
Kalila, M.S. & Kamarudin, S.K. 2019. Bacterial
cellulose as a potential hard gelatin capsule. Jurnal Kejuruteraan SI 2(1): 151-156.
Ramli, S., Ja’afar, S.M., Sisak, M.A.A., Zainuddin,
N. & Rahman, I.A. 2015. Formulation and physical characterization of
microemulsions based carboxymethyl cellulose as vitamin c carrier. Malaysian
Journal of Analytical Sciences 19(1): 275-283.
Rani, M., Rudhziah, S., Ahmad, A. &
Mohamed, N. 2014. Biopolymer electrolyte based on derivatives of cellulose from
kenaf bast fiber. Polymers 6(9): 2371-2385.
Salleh, K.M., Zakaria, S., Sajab, M.S.,
Gan, S. & Kaco, H. 2019. Superabsorbent hydrogel from oil palm empty fruit
bunch cellulose and sodium carboxymethylcellulose. International Journal of
Biological Macromolecules131: 50-59.
Salleh, K.M., Zakaria, S., Sajab, M.S.,
Gan, S., Chia, C.H., Jaafar, S.N.S. & Amran, U.A. 2018. Chemically
crosslinked hydrogel and its driving force towards superabsorbent behaviour. International
Journal of Biological Macromolecules118: 1422-1430.
Su, J.F., Yuan, X.Y., Huang, Z., Wang,
X.Y., Lu, X.Z., Zhang, L.D. & Wang, S.B. 2012. Physicochemical properties
of soy protein isolate/carboxymethyl cellulose blend films crosslinked by
Maillard reactions: Color, transparency and heat-sealing ability. Materials
Science and Engineering: C 32(1): 40-46.
Sullivan, S.P., Murthy, N. & Prausnitz, M.R. 2008. Minimally
invasive protein delivery with rapidly dissolving polymer microneedles. Advanced
Materials 20(5): 933-938.
Tabari, M. 2017. Investigation of carboxymethyl cellulose
(CMC) on mechanical properties of cold water fish gelatin biodegradable edible
films. Foods 6(6): 41.
Thakur, R.R.S., Tekko, I.A., Al-Shammari, F., Ali,
A.A., McCarthy, H. & Donnelly, R.F. 2016. Rapidly dissolving polymeric
microneedles for minimally invasive intraocular drug delivery. Drug. Deliv.
Transl. Res. 6(6): 800-815.
Tongdeesoontorn, W., Mauer, L.J.,
Wongruong, S., Sriburi, P. & Rachtanapun, P. 2011. Effect of carboxymethyl
cellulose concentration on physical properties of biodegradable cassava
starch-based films. Chemistry Central Journal 5(1): 1-8.
Tuan-Mahmood, T.M., McCrudden, M.T.C., Torrisi,
B.M., McAlister, E., Garland, M.J., Singh, T.R.R. & Donnelly, R.F. 2013.
Microneedles for intradermal and transdermal drug delivery. European Journal
Pharmaceutical Sciences 50(5): 623-637.
Tong, Q., Xiao, Q. & Lim, L.T. 2008.
Preparation and properties of pullulan-alginate-carboxymethylcellulose blend
films. Food Research International 41: 1007-1014.
Waghule, T., Singhvi, G., Dubey, S.K.,
Pandey, M.M., Gupta, G., Singh, M. & Dua, K. 2019. Microneedles: A smart
approach and increasing potential for transdermal drug delivery system. Biomedicine
& Pharmacotheraphy 109: 1249-1258.
Wu, J., Sun, X., Guo, X., Ge, S. &
Zhang, Q. 2017. Physicochemical properties, antimicrobial activity and oil
release of fish gelatin films incorporated with cinnamon essential oil. Aquacultuure
and Fisheries 2(4): 185-192.
Wu, J., Ge, S., Liu, H., Wang, S., Chen,
S., Wang, J. & Zhang, Q. 2014. Properties and antimicrobial activity of
silver carp (Hypophthalmichthys molitrix) skin gelatin-chitosan films
incorporated with oregano essential oil for fish preservation. Food
Packaging and Shelf Life 2(1): 7-16.
Yang, J., Liu, X., Fu, Y. & Song, Y.
2019. Recent advances of microneedles for biomedical applications: Drug
delivery and beyond. Acta Pharmaceutica Sinica B 9(3): 469-483.
Zhang, Y., Jiang, G., Yu, W., Liu, D.
& Xu, B. 2018. Microneedles fabricated from alginate and maltose for
transdermal delivery of insulin on diabetic rats. Materials Science and
Engineering: C 85: 18-26.
*Pengarang
untuk surat-menyurat; email: su_ramli@ukm.edu.my
|