| Sains
          Malaysiana 49(9)(2020): 2269-2279 
          
 http://dx.doi.org/10.17576/jsm-2020-4909-24
            
           
             
           Improving
            Rate of Gelatin/Carboxymethylcellulose Dissolving Microneedle for Transdermal
            Drug Delivery
  
 (Penambah Baik Kadar Larutan Jarum Mikro
            Gelatin/Karboksimetilselulosa untuk Penghantaran Ubat Transdermal)
            
           
             
           NUR
            AFIQAH MUSTAFA KAMAL1, TUAN MAZLELAA TUAN MAHMOOD3, ISHAK
            AHMAD1,2 & SURIA RAMLI1,2*
  
 
             
           1Department of Chemical Sciences, Faculty of Science and Technology, Universiti
            Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
            
           
             
           2Polymer Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
            UKM Bangi, Selangor Darul Ehsan, Malaysia
            
           
             
           3Drug and Herbal Development Centres, Faculty
            of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Sultan Abdul Aziz, 50300
            Kuala Lumpur, Federal Territory, Malaysia
            
           
             
           Diserahkan:
            15 Oktober 2019/Diterima: 8 Mei 2020
            
           
             
           ABSTRACT
            
           Gelatin
            has been widely used as a nature-derived biopolymer material due to its high
            biocompatibility and abundance. However, multiple fabrication steps for the
            moulding process may limit its application to microneedle technology as
            biomedical application. This research focused on physical, chemical, and
            mechanical characteristics of gelatin-based dissolving microneedle (DMN) by
            adding in various concentrations of carboxymethylcellulose.
            Carboxymethylcellulose (CMC) derived from kenaf bast fibre were extracted by
            alkaline treatment and esterification process, followed by fabrication of DMN
            with gelatin using centrifuge-casting method. The formulation of G/CMC6
            demonstrated the highest mechanical strength of 11.2 N by texture analyzer;
            hence, G/CMC6 was chosen for further investigate of its intra- and
            intermolecular bond, amorphous study, and its geometry by Fourier Transform
            Infrared (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscopy
            (SEM). FTIR showed various chemical interactions involved including hydrogen
            bonding, dipole-dipole and charge effect. The XRD result shows amorphous peak
            of gelatin decreased at 2θ = 20 - 21° with the addition of CMC. The height
            of microneedle arrays also decreased from its micromould by 36.7% due to
            agglomeration of CMC. Considering the biodegradability and the improvement of
            gelatin-based DMN mechanical properties by carboxymethylcellulose, the
            combination of gelatin and CMC is one of great potential for delivering drugs
            using microneedle.
  
            
            
           Keywords:
            CMC; dissolving microneedle; gelatin; mechanical characteristics
            
           
             
           ABSTRAK
            
           Gelatin
            digunakan secara meluas sebagai sumber terbitan biopolimer semula jadi kerana
            sifatnya yang tinggi biokeserasian. Walau bagaimanapun, kaedah fabrikasi
            berganda bagi proses acuan dalam aplikasi teknologi jarum mikro adalah terhad.
            Kajian ini memfokus kepada sifat kimia, fizikal dan mekanikal jarum mikro
            terlarut (DMN) berasaskan gelatin dengan penambahan pelbagai variasi kepekatan
            selulosa karboksimetil (CMC). CMC yang digunakan merupakan terbitan daripada
            serabut kenaf yang diekstrak oleh rawatan alkali dan proses esterifikasi,
            kemudiannya gelatin dan variasi kepekatan CMC digunakan untuk memfabrikasikan
            jarum mikro terlarut dengan menggunakan kaedah tuangan-emparan. Formulasi
            G/CMC6 telah menunjukkan kekuatan mekanikal jarum mikro tertinggi dengan 11.2 N
            oleh analisis tekstur. Oleh itu, G/CMC6 dipilih untuk mengkaji ikatan intra-
            dan intermolekul, amorfus dan geometri menggunakan instrumentasi analisis
            spektroskopi transformasi Fourier infra merah (FTIR), pembelauan X-ray (XRD)
            dan mikroskopi imbasan elektron (SEM). FTIR menunjukkan terdapat interaksi
            kimia berlaku yang melibatkan ikatan hidrogen, dwikutub dan kesan cas.
            Keputusan XRD pula menunjukkan puncak amorfus gelatin semakin menurun pada
            2θ = 20 - 21° dengan penambahan CMC. Panjang jarum mikro pula berkurangan
            semasa proses pengeringan, iaitu berkurangan sebanyak 36.7% daripada acuan atas
            faktor aglomerasi oleh CMC. Kajian ini telah membuktikan bahawa biodegradasi
            dan peningkatan mekanikal jarum mikro berasaskan gelatin dan CMC salah satu
            potensi untuk menghantar ubat dalam bidang farmaseutis.
  
           
             
           Kata
            kunci: CMC; gelatin; jarum mikro; terlarut; sifat mekanikal
            
           
             
           RUJUKAN
            
           Ali, N.H., Amin, M.C.I.M. & Ng, S.F.
            2019. Sodium carboxymethyl cellulose hydrogels containing reduced graphene
            oxide (rGO) as a functional antibiofilm wound dressing. Journal of
              Biomaterials Science, Polymer Edition 30(8): 629-645.
  
           Atef, M., Rezaei, M. & Behrooz, R.
            2014. Preparation and characterization agar-based nanocomposite film reinforced
            by nanocrystalline cellulose. International Journal of Biological
              Macromolecules 70: 537-544.
  
           Barry, B. 2001. Novel mechanisms and
            devices to enable successful transdermal drug delivery. European
              Journal of Pharmaceutical Sciences 14: 101-114.
  
           Bono, A., Ying, P.H., Yan, F.Y., Muei,
            C.L., Sarbatly, R. & Krishnaiah, D. 2009. Synthesis and characterization of
            carboxymethyl cellulose from palm kernel cake. Advance Nature Apploed Sciecnce 3(1): 5-11.
  
           Chai, M.N. & Isa, M.I.N. 2013. The
            oleic acid composition effect on the carboxymethyl cellulose based biopolymer
            electrolyte. Journal Crystallization Process Technology 3: 1-4.
  
           Chen, M.C., Ling, M.H., Lai, K.Y. & Pramudityo, E. 2012.
            Chitosan microneedle patches for sustained transdermal delivery of
            macromolecules. Biomacromolecules 13(12): 4022-4031.
  
           Dangol, M., Yang, H., Li, C.G., Lahiji,
            S.F., Kim, S., Ma, Y. & Jung, H. 2016. Innovative polymeric system (IPS)
            for solvent-free lipophilic drug transdermal delivery via DMNs. Journal of
              Controlled Release 223: 118-125. 
  
 Esteghlal, S., Niakousari, M. &
            Hosseini, S.M.H. 2018. Physical and mechanical properties of gelatin-CMC
            composite films under the influence of electrostatic interactions. International
              Journal of Biological Macromolecules 114: 1-9.
  
           Hosseini, S.F., Rezaei, M., Zandi, M.
  & Ghavi, F.F. 2013. Preparation and functional properties of fish
            gelatin-chitosan blend edible films. Food Chemistry 136(3-4): 1490-1495.
  
           Hu, D., Wang, H. & Wang, L. 2016.
            Physical properties and antibacterial activity of quaternized
            chitosan/carboxymethyl cellulose blend films. LWT- Food Science and
              Technology 65: 398-405.
  
           Hube, M.A., Ferrer, A., Tyagi, P., Yin,
            Y., Salas, C., Pal, L. & Rojas, O.J. 2017. Nanocellulose in thin films,
            coatings, and plies for packaging applications: A review. BioResources12(1): 2143-2233.
  
 Ishak, M.R., Leman, Z., Sapuan, S.M.,
            Edeerozey, A.M.M. & Othman, I.S. 2010. Mechanical properties of kenaf bast
            and core fibre reinforced unsaturated polyester composites. IOP Conference
              Series: Material Science Engineering 11: 012006.
  
           Ito, Y., Hirono, M., Fukushima, K., Sugioka, N. & Takada, K.
            2012. Two-layered DMNs formulated with intermediate-acting insulin. International
              Journal of Pharmaceutics 436(1-2): 387-393.
  
           Hazirah, M.N., Isa, M.I.N. & Sarbon,
            N.M. 2016. Effect of xanthan gum on the physical and mechanical properties of
            gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf Life 9: 55-63.
  
           Jafirin, S., Ahmad, I. & Ahmad, A. 2014. Carboxymethyl
            cellulose from kenaf reinforced composite polymer electrolytes based 49%
            poly(methyl methacrylate)-grafted natural rubber. Malaysian Journal of
              Analytical Sciences 18(2): 376-384.
  
           Jahit, I.S., Nazmi, N.N.M., Isa, M.I.N.
  & Sarbon, N.M. 2016. Preparation and physical properties of
            gelatin/CMC/chitosan composite films as affected by drying temperature. International
              Food Research Journal 23(3): 1068-1074.
  
           Kamath, M.G., Bhat, G.S., Parikh, D.V.
  & Mueller, D. 2005. Cotton fiber nonwovens for automotive composites. International
    Nonwovens Journal. doi/10.1177/1558925005os-1400105.
  
           Kumsah, C.A., Pass, G. & Phillips,
            G.O. 1976. The interaction between sodium carboxymethylcellulose and water. Journal
              of Solution Chemistry 5(11): 799-806.
  
           Lai, J.Y. 2010. Biocompatibility of
            chemically cross-linked gelatin hydrogels for ophthalmic use. Journal of
              Material Science: Materials in Medicine 21(6): 1899-1911.
  
           Lan, W., He, L. & Liu, Y. 2018.
            Preparation and properties of sodium carboxymethyl cellulose/sodium
            alginate/chitosan composite film. Coatings 8(8): 291.
  
           Marques, N.D.N., Balaban, R.D.C., Halila,
            S. & Borsali, R. 2018. Synthesis and characterization of carboxymethylcellulose
            grafted with thermoresponsive side chains of high LCST: The high temperature
            and high salinity self-assembly dependence. Carbohydrate Polymers 184:
            108-117.
  
           Naik, A., Kalia, Y.N. & Guy, R.H.
            2000. Transdermal drug delivery: Overcoming the skin’s barrier function. Pharmaceutical
              Science & Technology Today 3: 318-326.
  
           Naito, S., Ito, Y., Kiyohara, T., Kataoka, M., Ochiai, M. &
            Takada, K. 2012. Antigen-loaded DMN array as a novel tool for percutaneous
            vaccination. Vaccine 30(6): 1191-1197.
  
           Nazmi, N.N., Isa, M.I.N. & Sarbon,
            N.M. 2017. Preparation and characterization of chicken skin gelatin/CMC
            composite film as compared to bovine gelatin film. Food Bioscience 19:
            149-155.
  
           Pan, J., Ruan, W., Qin, M., Long, Y., Wan,
            T., Yu, K., Zhai, Y., Wu, C. & Xu, Y. 2018. Intradermal delivery of STAT3
            siRNA to treat melanoma via DMNs. Scientific Reports 8: 1117.
  
           Park, D., Park, H., Seo, J. & Lee, S. 2014.
            Sonophoresis in transdermal drug deliverys. Ultrasonics 54:
            56-65.
  
           Prausnitz, M.R. & Langer, R. 2008.
            Transdermal drug delivery. Nature Biotechnology 26(11): 1261-1268.
  
           Qi, X.M., Liu, S.Y., Chu, F.B., Pang, S., Liang, Y.R.,
            Guan, Y. & Sun, R.C. 2015. Preparation and characterization of blended
            films from quaternized hemicelluloses and carboxymethyl cellulose. Mater 9(1): 4.
  
           Rahman, N.A., Kamarudin, N.S., Esaa, F.,
            Kalila, M.S. & Kamarudin, S.K. 2019. Bacterial
              cellulose as a potential hard gelatin capsule. Jurnal Kejuruteraan SI 2(1): 151-156. 
  
 Ramli, S., Ja’afar, S.M., Sisak, M.A.A., Zainuddin,
            N. & Rahman, I.A. 2015. Formulation and physical characterization of
            microemulsions based carboxymethyl cellulose as vitamin c carrier. Malaysian
              Journal of Analytical Sciences 19(1): 275-283.
  
           Rani, M., Rudhziah, S., Ahmad, A. &
            Mohamed, N. 2014. Biopolymer electrolyte based on derivatives of cellulose from
            kenaf bast fiber. Polymers 6(9): 2371-2385.
  
           Salleh, K.M., Zakaria, S., Sajab, M.S.,
            Gan, S. & Kaco, H. 2019. Superabsorbent hydrogel from oil palm empty fruit
            bunch cellulose and sodium carboxymethylcellulose. International Journal of
              Biological Macromolecules131: 50-59.
  
 Salleh, K.M., Zakaria, S., Sajab, M.S.,
            Gan, S., Chia, C.H., Jaafar, S.N.S. & Amran, U.A. 2018. Chemically
            crosslinked hydrogel and its driving force towards superabsorbent behaviour. International
              Journal of Biological Macromolecules118: 1422-1430.
  
 Su, J.F., Yuan, X.Y., Huang, Z., Wang,
            X.Y., Lu, X.Z., Zhang, L.D. & Wang, S.B. 2012. Physicochemical properties
            of soy protein isolate/carboxymethyl cellulose blend films crosslinked by
            Maillard reactions: Color, transparency and heat-sealing ability. Materials
              Science and Engineering: C 32(1): 40-46.
  
           Sullivan, S.P., Murthy, N. & Prausnitz, M.R. 2008. Minimally
            invasive protein delivery with rapidly dissolving polymer microneedles. Advanced
              Materials 20(5): 933-938.
  
           Tabari, M. 2017. Investigation of carboxymethyl cellulose
            (CMC) on mechanical properties of cold water fish gelatin biodegradable edible
            films. Foods 6(6): 41. 
  
 Thakur, R.R.S., Tekko, I.A., Al-Shammari, F., Ali,
            A.A., McCarthy, H. & Donnelly, R.F. 2016. Rapidly dissolving polymeric
            microneedles for minimally invasive intraocular drug delivery. Drug. Deliv.
              Transl. Res. 6(6): 800-815.
  
           Tongdeesoontorn, W., Mauer, L.J.,
            Wongruong, S., Sriburi, P. & Rachtanapun, P. 2011. Effect of carboxymethyl
            cellulose concentration on physical properties of biodegradable cassava
            starch-based films. Chemistry Central Journal 5(1): 1-8.
  
            Tuan-Mahmood, T.M., McCrudden, M.T.C., Torrisi,
            B.M., McAlister, E., Garland, M.J., Singh, T.R.R. & Donnelly, R.F. 2013.
            Microneedles for intradermal and transdermal drug delivery. European Journal
              Pharmaceutical Sciences 50(5): 623-637.
  
           Tong, Q., Xiao, Q. & Lim, L.T. 2008.
            Preparation and properties of pullulan-alginate-carboxymethylcellulose blend
            films. Food Research International 41: 1007-1014.
  
           Waghule, T., Singhvi, G., Dubey, S.K.,
            Pandey, M.M., Gupta, G., Singh, M. & Dua, K. 2019. Microneedles: A smart
            approach and increasing potential for transdermal drug delivery system. Biomedicine
  & Pharmacotheraphy 109: 1249-1258.
  
           Wu, J., Sun, X., Guo, X., Ge, S. &
            Zhang, Q. 2017. Physicochemical properties, antimicrobial activity and oil
            release of fish gelatin films incorporated with cinnamon essential oil. Aquacultuure
              and Fisheries 2(4): 185-192.
  
           Wu, J., Ge, S., Liu, H., Wang, S., Chen,
            S., Wang, J. & Zhang, Q. 2014. Properties and antimicrobial activity of
            silver carp (Hypophthalmichthys molitrix) skin gelatin-chitosan films
            incorporated with oregano essential oil for fish preservation. Food
              Packaging and Shelf Life 2(1): 7-16.
  
           Yang, J., Liu, X., Fu, Y. & Song, Y.
            2019. Recent advances of microneedles for biomedical applications: Drug
            delivery and beyond. Acta Pharmaceutica Sinica B 9(3): 469-483.
  
           Zhang, Y., Jiang, G., Yu, W., Liu, D.
  & Xu, B. 2018. Microneedles fabricated from alginate and maltose for
            transdermal delivery of insulin on diabetic rats. Materials Science and
              Engineering: C 85: 18-26.
  
           
             
           *Pengarang
            untuk surat-menyurat; email: su_ramli@ukm.edu.my
  
 
             
           
            
          
          
          
          
          
           
            
        
         
        
         
          
           
          
           
          
             
     |